Agronomic Decisions affecting N use in Arable and Horticultural Crops

Murray Craighead Nutrient Solutions Ltd

Background

- New Zealand arable rotations are very diverse
- Animal grazing may be involved
- Increasingly more continuous cropping
- Increase in perennial crops being grown
- Therefore a large range of N requirements

olutions

Range 0-350 kgN/ha Annuals/Perennials

- Low 0-50 legumes, grapes
- Low/med 50-80 seed potatoes, *blackcurrants*
- Medium 80-160 spring cereals, grass seed, brassica seed, *apples*
- High 160-240 autumn cereals, maize, potatoes, hops
- V. high 250-300 main crop/fry potatoes

Soil Nitrogen testing

- Nitrogen tests measure a small proportion of the soil N – therefore use with caution
- Potentially available soil N tests should be used in 40-50 kg bands – estimate of mineralisation potential
- Mineral N tests measure immediately available N - subject to rapid change, handling issues – use (smaller) bands

○ Sap – ongoing, accuracy

Soil Type and Nitrogen

By far the greatest factor in determining N use is **soil type** (and its moisture retention)

Clover and N fixation

Temp/Waimak soils	History	AMN kgN/ha
Light/stony	Ex 1 yr clover	55
Light/medium	Ex 1 yr clover	90
Medium/deep	Ex 1 yr clover	170
Light/medium	Ex 2 yr clover	235

Peas – fix N for themselves, fert N trading veg vs seed

Crop history

HIGH soil N

2 yr white clover crop Ex long term (3yr+) pasture Intermediate peas, greenfeed Rape, brassica seed Vegetable crops Ex continuous cereals

LOW soil N

Previous Crop History and N use

- Exhaustive N history malting barley needs low N carryover, no late N
- Carryover fert history many potato crops so low starter/early N
- Ex pasture/some greenfeed,
 cover crops delays in N
 release, need earlier N

End use and Nitrogen

- Wheat feed and biscuit vs milling protein yield
- Barley feed vs malting
- Potatoes seed, early, crisp, main crop, fry
- o Peas seed, process, straw rotation

N efficiency

Crop removal less soil N/efficiency factor

Annual crops – 50-60% — 65-75%

 Genetics, grazing/fungicide/PGR/irrigation management – eg. ryegrass

Perennial crops – 80-90%

fert banding, root system, pruning, irrigation – eg.
 blackcurrants

Remember also basal P, K, S – rotation, tradeoff

Forms of N

- Urea most cost effective, but N pulse
- CAN economics?, but more gradual
- Ammonium sulphate economics, S, acidifying

Other

- ASN, Calcium nitrate, NPK
- Nitrification inhibitors?
- Coatings?

Timing of N

- Continuous (from spring) hops
- Early to bulking main crop potatoes
- Flexible blackcurrants
- Early maize, spring crops

Wheat/Barley

Efficiency - Nitrification inhibitors?

- Variable results in arable situation
- Losses embellished (pasture + management)
- Why when farmers can alter timing of N to suit critical growth stages
- Value in late sidedressing?
- Main benefit is actually in reducing germination damage when Urea applied preplant

Efficiency - Solid vs Liquid

- In theory no difference
 eg. late N on Wheat
- Liquid N rates dictated by burn
- Via irrigation regular low rates (evenness timing)

