

Regenerative Agriculture An agronomists view

Professor Derrick Moot

New Zealand's specialist land-based university

Introduction

- Global food production
- RA history, current status, future......
- Soils focus.....
- NZ context pastoral?
- Climate change

How do we feed 10 BN

Deforestation or Intensification?

Impact of G x E x M

Redrawn from: https://ourworldindata.org/grapher/global-land-spared-as-a-result-of-cereal-yield-improvements. Accessed: 16/08/2022. Based on data sourced from: https://data.worldbank.org/data-catalog/world-development-indicators. Accessed: 16/08/2022.

Mean yield ratio – CA vs. Organic

Support the Guardian

Available for everyone, funded by readers

News

Opinion

Sport

Culture

Lifestyle

More~

Environment ► Climate crisis Wildlife Energy Pollution

Food

The most damaging farm products? Organic, pasture-fed beef and lamb

George Monbiot

Tue 16 Aug 2022 13.26 BST

Scenario: Imagine you are going to the store to purchase a food or beverage you like. You see they have made a newer version of the product. Option A is the original product. Option B is the same product, but it is labelled, "grown using regenerative agriculture". Option B costs more than Option A.

Regen Ag – and friends

- 1980-2015 RA << Sustainable ag, organic ag, agroecology
- Regen Ag doubling in public items annually since 2016 - NGOs, multi-nationals etc.
- Public demand research funding......Govt. has responded....no clear definition of what RA is...

< 50 Science publications Giller et al. 2020

Cumulative times terms appear in science publications

Times terms appear in popular media

Regen Ag – Philosophy Harwood 1983

- High yields free of biocides Rodale institute
- 2. Increased soil productivity depth and fertility
- 3. Soil genesis from upward flow of nutrients
- 4. Stable biological interactions eliminate biocides
- 5. No synthetic fertilizers manure
- 6. Intimate relationship between farmer and farm
- 7. Self-reliant for N N fixation
- 8. Animals hormone free with no prophylactic antibiotics
- 9. Increased levels of employment

Beyond organic - increase productivity

Core themes of regenerative agriculture

Objectives	Regenerate the system (15*)		Reduce environmental externalities (8)			Improve the ecosystem (7)		Improve human health (13)	Improve economic prosperity
	Enhance and soil health (15)				Optimise resource management (13)	Alleviate climate change (8)	Improve water quality and availability (5)		Food ystems level
	Improve (soil) biodiversity (17)	Improve s carbon (1		Improve soil physical quality (11)	Improve nutrient cycling (12)				
ities	Minimise external inputs (12)	Mixed farming (Minimise tillage (7)	Crop rotation (6)		Farm le	vel	Logond
Activities	Manure and compost (5)	Use of perennia (5)		Other soil activities (12)		•			Planet
*num	nber in brackets	represents	the	number of sear	ch records		ı		Soil People
									Profit

Regen Ag = conventional Ag.....

- ✓ Crop rotations
- ✓ Cover crops
- ✓ Minimum tillage glyphosate
- ✓ Controlled traffic
- ✓ Soil Organic Matter for nutrient cycling
- ✓ Minimize soil erosion/agrichemical use
- ✓ Livestock grazing rotational grazing

Encourage and promote

Regen Ag – crisis to address...

- 1. Soil Health = ?????? No definition
 - soil biology no links with function
 - increased NO₃- leaching, GHG emissions
 - trade-offs seldom discussed
 - forest to arable reduced SOM and soil C
 - forest to pasture increased SOM and soil C

Soil organic matter is NOT soil carbon

200-300 t OM/ha in NZ pastures

Regen Ag - Soil health - nutrients?

- C storage saturated in many NZ soils
- C storage rate is low and temporary for crops
- SOM only increase yields if nutrient limiting
- Nutrients do not upwell must be replaced
- N fixation requires P and S

Law of the most limiting- Leiberg

Regen Ag – crisis to address.....

2. Biodiversity

- Soil biology no evidence
- Species Multi >> Monocultures
- Paddock or landscape?
- national developed/developing

Best land already used - yield gaps

Image source: https://scitechdaily.com/more-than-one-third-of-corn-belt-farmland-has-completely-lost-its-carbon-rich-topsoil/
Publication: https://scitechdaily.com/more-third-of-corn-belt-farmland-has-completely-lost-its-carbon-rich-topsoil/
Publication: <a href="https://scitechdaily.com

Associated reference: Evan A. Thaler E.A., Larsen I.J., Yu Q. 2021. The extent of soil loss across the US Corn Belt. *Proceedings of the National Academy of Sciences*. https://doi.org/10.1073/pnas.1922375118

RA diversity at paddock scale

Seed mixtures – past

P.W. Smallfield (1917-18)

A 1910s recommendation for pasture renewal on pumice land near Rotorua (Smallfield 1949).

Species	Rate (lb/acre)	Species	Rate (lb/acre)
Cocksfoot	5	Cowgrass	2
Danthonia	1/2	Tall fescue	7
Browntop	2	Paspalum	1/2
Bay grass	1/8	Crested dogstail	1
Chewings fescue	1	Sheep's burnet	2
Poa pratensis	1/2	Yarrow	1/8
Birdsfoot trefoil	1/4	Sheep's parsley	1
White clover	- 1	Perennial rye	2
			26

Regen Ag – crisis to address...

3. Climate change

- Soil Carbon levels 10-15% not NZ
- nitrous oxide reductions from less N
- nitrous oxide increases from manure
- lower stocking rates = less methane/food
- slower growing animals = more methane

Global deforestation to compensate

Regenerative or Intensive CO₂ + CH₄

NZ Sheep and Beef Cattle CH₄ and N₂O warming

Global energy supply

Redrawn from: https://ourworldindata.org/energy-production-and-changing-energy-sources. Accessed: 2/10/2019. Based on data sourced from Smil 2017. https://vaclavsmil.com/2016/12/14/energy-transitions-global-and-national-perspectives-second-expanded-and-updated-edition/; https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.

Regen Ag - Questions

- What is the problem being fixed?
- What is regenerated?
- What agronomic practice will provide regeneration?
- Will it work economically and socially?
- What political/business forces are driving the use of any proposed solution?

Lacks an evidence base - NZ?

Conclusions

- "Fix agriculture" "failing food systems" old mantras
- RA = CA in many areas promote those
- RA cropping basis less pastoral data
- Soil health has no function...
- SOM becomes CO₂ and is not soil C
- RA is not a solution to CO₂ driven climate change

Politically expedient – market opportunity?

References

- Brown, C. 1990. An integrated herbage system for Southland and South Otago. Proceedings of the New Zealand Grassland Association, 52, 119-122.
- Case B, Ryan C. 2020. An analysis of carbon stocks and net carbon position for New Zealand sheep and beef farmland. 29 p. Online: https://beeflambnz.com/sites/default/files/news-docs/BL_Carbon_report_for_review_final_submit.pdf.
- Condron L, Stark C, O'Callaghan M, Clinto nP, Huang Z. 2010. The role of microbial communities in the formation and decomposition of soil organic matter. In: G. D & E. T Eds. Soil Microbiology and Sustainable Crop Production. Dordrecht: Springer. pp. 81-118. https://doi.org/10.1007/978-90-481-9479-7 4.
- de Klein CAM, Pinares-Patino C, Waghorn GC. 2008. Greenhouse gas emissions. In: McDowell RW Ed. *Environmental impacts of pasture-based farming*. Wallingford, UK: CAB International. pp. 1-33. https://doi.org/10.1079/9781845934118.0000.
- Evans, L. T. 1998. Feeding the Ten Billion: Plants and Population Growth. U.K.: Cambridge University Press. 264 pp.
- FAOSTAT. 2019. Global population, rice and wheat yields, N fertiliser consumption, Irrigated land area 1961-2018 sourced from: http://www.fao.org/faostat/en/#data/OA. Accessed 4/10/2019. (some points removed for clarity. General trend lines added by eye DPR Team, Lincoln University).
- Giller KE, Hijbeek R, Andersson JA, Sumberg J. 2021. Regenerative Agriculture: An agronomic perspective. *Outlook on Agriculture 50*: 13-25. https://doi.org/10.1177/0030727021998063.
- Harwood RR. 1983. International overview of regenerative agriculture. Presented at: *Proceedings of a Workshop on Resource-efficient Farming Methods for Tanzania*. Faculty of Agriculture, Forestry and Veterinary Science, University of Dares Salaam, Morogoro, Tanzania. 16-20 May 1983.
- Ledgard, S. F. 2017. Assessing the environmental impact of sheep production. *In:* J. Greyling (ed). Achieving sustainable production of sheep. Cambridge, United Kingdom: Burleigh Dodds Science Publishing Limited, 407-430.
- Mills, A., Moot, D. J. and Jamieson, P. D. 2009. Quantifying the effect of nitrogen of productivity of cocksfoot (*Dactylis glomerata* L.) pastures. *European Journal of Agronomy*, **30**, 63-69.
- Mills, A., Moot, D. J. and McKenzie, B. A. 2006. Cocksfoot pasture production in relation to environmental variables. *Proceedings of the New Zealand Grassland Association*, **68**, 89-94.
- Moot DJ, Davison R. 2021. Changes in New Zealand red meat production over the past 30 yr. *Animal Frontiers* 11: 26-31. https://doi.org/10.1093/af/vfab027.
- New Zealand Fertiliser Manufacturers' Research Association. 2020. Annual update (New Zealand Fertiliser Manufacturers' Research Association). 15 pp. Retrieved 5/5/2011 from: http://www.fertresearch.org.nz/resource-centre/annual-updates.. Additional data (2011-2019) via Pers. Comm.
- Our Land and Water National Science Challenge. 2019. The 34 Influences That Will Drive the Future of Farming. https://ourlandandwater.nz/news/matrix-2019/. Date accessed 22/10/2021.
- PGG Wrightson Seeds. 2017. Pasture Guide 2017. Accessed 20/7/2017. https://online.flippingbook.com/view/509844/
- Schreefel L, Schulte RPO, de Boer IJM, Schrijver AP, van Zanten HHE. 2020. Regenerative agriculture the soil is the base. *Global Food Security 26*: 100404. https://doi.org/10.1016/j.gfs.2020.100404.
- Smallfield PW. 1949. Grassing of pumice land. Proceedings of the New Zealand Grassland Association 11: 59-67.
- United Nations, Department of Economic and Social Affairs, Population Division. 2019. World Population Prospects 2019, custom data acquired via website: https://population.un.org/wpp/DataQuery/. Date accessed: 22/10/2021.
- van Ittersum, M. K. 2011. Future Harvest: the fine line between myopia and utopia. *In:* Inaugural lecture upon taking up the post of Personal Professor of Plant Production Systems at Wageningen University on 12 May 2011. (Wageningen University: Wageningen University, 34 pp. Online: http://edepot.wur.nl/169680.

External Data Sources

Slide 5:

Recreated from Evans 1998, van Ittersum 2011 & FAOSTAT 2019. FAOSTAT. 2019. Global population, rice and wheat yields, N fertiliser consumption, Irrigated land area 1961-2018 sourced from: http://www.fao.org/faostat/en/#data/OA. Accessed 4/10/2019. (some points removed for clarity. General trend lines added by eye DPR Team, Lincoln University).

Slide 51:

CO₂ at Muana Loa, Hawaii. Dr. Pieter Tans, NOAA/ESRL (<u>www.esrl.noaa.gov/gmd/ccgg/trends/</u>) and Dr. Ralph Keeling, Scripps Institution of Oceanography (scrippsco2.ucsd.edu/). (28/5/2019).

Slide 52:

Data sourced from: https://ourworldindata.org/energy-production-and-changing-energy-sources Accessed 2/10/2019; Smil 2017; https://www.fao.org/faostat/en/#data/OA Accessed 4/10/2019. Regression equation fitted by DPR Team, Lincoln University.

Slide 53:

Energy consumption (TWh) graph data sourced from: https://ourworldindata.org/energy-production-and-changing-energy-sources. Accessed 2/10/2019. Original graph data derived from: Vaclav Smil (2017). Energy Transitions: Global and National Perspectives. & BP Statistical Review of World Energy. Online: https://www.bp.com/2016/12/14/energy-transitions-global-and-national-perspectives-second-expanded-and-updated-edition/; https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.

A Black Blizzard approaching Rolla, Kansas on May 6, 1935. Image from the FDR Digital Archives.

Global food system is broken

- Hunger
- Poverty
- Obesity
- Over reliance on fertilizer and pesticides
- Environmental degradation
- Animal welfare

Political and economic change

Crisis narrative – Blame CA

- Agriculture in crisis
- Soil health collapsing
- Biodiversity 6th mass extinction
- Plateauing crop yields
- Climate change
- Industrialised agriculture

How to solve these problems?

CH₄ reduced by faster LWG

Energy requirement (MJ ME) for lamb growth from 25 to 35 kg live-weight

		Energy	*Methane
Lamb growth rate		consumed	g CH4/kg
(g/hd/d)	Days on farm	per lamb	gain
100	100	1300	303
200	50	850 (↓ 53	3%) 199
300	33	726 (↓79	9%) 165

MJ ME: megajoules of metabolisable energy *11

Dry matter production

CO₂ at Mauna Loa, Hawaii

Energy consumption per capita

Data sourced from: https://ourworldindata.org/energy-production-and-changing-energy-sources Accessed 2/10/2019; Smil 2017;

Age old Battle – Food production

- Sustainable intensification vs agroecology
- Agrichemicals/fertilizer/irrigation vs sustainable ag, organics
- High input versus Low input systems
- Evidence versus faith

How do we feed 10 Bn people?