THE EVALUATION OF SOME LUPIN SPECIES NEW TO NEW ZEALAND

N.G. Porter, Helen M. Gilmore, Applied Biochemistry Division, DSIR, Lincoln G.D. Hill

Plant Science Department, Lincoln College, Canterbury.

ABSTRACT

Twenty-eight lines from 9 species of lupins were grown at Lincoln to evaluate potential for seed or forage production. More commonly used cultivars were grown for comparison plants. Data are given on size and general growth habit of plants. None of the species appear to be suitable for forage production. From records of flower formation and abscission, there appears to be little real difference in the patterns of flower set among species, although there are very great differences in the duration of flowering and degree of pod shattering.

Data on seed characteristics includes 1000 seed weight, individual plant seed yields, embryo/testa ratios, oil content, acid detergent fibre, and total nitrogen content.

All but two lines were bitter. Lupinus mutabilis shows sufficient promise to be examined further as a potential seed crop. Four species may be of use for bare ground stabilisation.

INTRODUCTION

Only two lupin species have been grown in New Zealand as commercial seed crops, Lupinus angustifolius and L. luteus. Only the former species is used for forage purposes. Most agronomic research has concentrated on L. angustifolius and L. luteus (Withers et al. 1974; Withers, 1975; Withers et al. 1975; Stoker, 1975). Recently L. albus has also been investigated. Lupinus cosentinii has also been examined as a commercial crop species (Hill and Horn, 1975), while L. pilosus (Hill, pers. comm.) and L. mutabilis (Palmer, pers. comm.) have been grown in small plots in New Zealand. In England, a small scale trial with L. mutabilis indicated that this species has potential for seed production (Masefield, 1975).

To expand the limited number of species available, 34 lines from ten species were introduced to examine their potential for forage or grain legume production, as well as characteristics that may be of use in breeding programmes or other projects. The current commercial cultivars of L. angustifolius (Unicrop, Uniharvest) and L. luteus (Weiko III) were grown with the newly introduced species as a reference point for judging their potential.

This trial was carried out to select lines to be examined in more detail in a properly replicated trial. It was not possible to have replicate plots for each line because of the small numbers of seeds obtained for most lines. Only the flower data in Table 2 were subjected to statistical analysis.

Sowing

METHODS

The seed was hand sown in mid September 1975 in single rows, with 10 cm between plants and 1 m between rows. No seed inoculant or fertiliser was used, and because of unknown tolerances, no chemical protection was given against weeds, diseases or pests. Six lines of L. mutabilis were similarly sown on arrival in late October.

A third sowing to determine frost tolerance of all lines was made in early April 1976. Treatment was as for the first two sowings except for the use of atrazine at 1.5 kg a.i./ha (pre-emergent) to control weeds.

Harvesting and measurements

The data on germination included an assessment of rate as well as percentage germination. Early growth assessed over the four weeks following was germination. In the frost hardiness data, values of $\overline{4}$ and 5 indicate survival and active growth during frosts, respectively.

The data on flower formation and abscission are the means from 10 plants and flower abscission is presented as the percentage of flowers that formed but failed to set pods.

Seed was harvested by hand as it became ripe to enable more accurate seed yields to be determined despite the severe shattering problem in the wild lines. Single plant seed yields are means of three plants only.

Seed weights are on an air dry basis. Oil, nitrogen and fibre figures were obtained using ground whole seed and are expressed on a dry weight basis. Total nitrogen was measured using a micro-Kjeldahl digestion followed by Autoanalyser measurement of ammonia. Oil contents were obtained gravimetrically after overnight Soxhlet extraction of dry ground seed with petroleum ether. Fibre was determined by the acid detergent fibre method. (Bailey and Ulyatt, 1970).

PLANT MATERIAL

Thirt-four lines from ten different species were introduced. Six of these failed to establish. Details of the successful lines and origins of the seed are shown in Table 1. Of these, line 862 was reclassified as L. angustifolius.

RESULTS

Data on the vegetative growth characteristics are summarised in Table 1. The established cultivars were generally superior in these to all introduced lines except those of L. albus and L. angustifolius. In the second trial, all species showed only minor temporary yellowing of the leaf tips in response to the 1.5 a.i.

TABLE 1: Vegetative growth characteristics of lupin species.

Species	Line or C.V.	Origin	Germin- ation*		Frost* Hardiness	Height cm	Habit		
Introduced				2.					
L. albococcineus	, 770	USSR	4	1	3	40- 50	Woody main stem with close strong		
	775	USSR	3	2 ·	2	40- 60	upper and lower branching.		
L. albus	771	USSR	4	4	5	50- 60	Erect, strong open upper branching,		
,	Astra	Chile	4	5	5	40- 60	no lower branching.		
	Multolupa	Chile	4	4	5	30- 80	-		
L. angustifolius	862	Argentina	5	5	5	50- 60	Erect, prolific upper and lower branching		
0	Bitter Blue	N.Ž.	4	5	5	50- 70	leaves dense.		
L. elegans	734	Australia	4	2	1	40- 60	Thick woody main axis.		
	776	USSR	2	2	3	30- 60	Very strong close upper		
	782	USSR	3	2	2	40- 50	branching.		
L. hirsutissimus	738	Germany	1	3	1	20 - 40	Rosette with weak lower branching		
L. hirsutus	779	USSR	1	1	0	20- 30	after flower spike emerges.		
L. mutabilis	736	Germany	5	3	1	60 - 100	Erect strong fleshy axis.		
	777	USSR	5	3	2	60 - 100	Strong open upper branching,		
	780	USSR	3	2	2	60-90	no lower branching.		
	785	Belgium	5	3	1	60-110	Leaves sparse.		
	792	Poland	5	3	0	40-90			
	880	Bolivia	2	3	1	50-90			
	881	England	2	3	2	30- 50			
	882	Argentina	3	2	1	50- 80			
	883	Argentina	5	4	1	60-100			
	884	Peru	5	4	2	90-110			
	885	Sth Africa	5	4	2	60- 90			
L. nanus	768	USSR	1	4	3	30-40	Rosette with strong lower and		
	774	USSR	2	4	4	20- 30	upper branching after flower		
	851	Czechoslovaki	a 3	4	4	20 - 30	spikes emerge.		
L. pubescens	737	Germany	3	2	0	40- 60	Thick woody main axis.		
•	778	USSR	. 3	2	2	50- 60	Very strong close upper branching,		
	781	USSR	3	2	2	50- 60	leaves dense.		
	784	Belgium	3	2	$\overline{2}$	30- 70	· · · · · · · · · · · · · · · · · · ·		
Established		č							
L. angustifolius	Unicrop	N.Z.	4	4	5	40- 60			
1.4 angustitollus	Uniharvest	N.Z.	4	4	5	40 - 60			
L. luteus	Weiko III	N.Z.	3	4	4	40 - 60 30 - 60	Erect open upper and lower branching.		
	ale 0-5 low to		5	5		55- 60	encer open upper and lower orallening.		

* Subjective scale 0-5, low to high.

kg/ha atrazine. No fungal or viral diseases were observed in any of the lines, despite a summer that was more humid than is usual in Canterbury.

Table 2 presents data on the flowering characteristics of the different species. Only L. albus shows any useful reduction in the time to flowering over the established cultivars. The duration of flowering varied greatly among species. The lines of L. hirsutus, L. hirsutissimus and L. nanus stopped flowering in early summer and the seed ripened quickly. Second generation plants of some lines of L. nanus and L. pubescens had set seed before growth was stopped by frosts. Lines of L. mutabilis continued flowering strongly until the first frost. Lupinus pubescens continued flowering and setting seed until frosts of 1-4° C occurred. Flower production was highest in the compact forms with strong upper Although percentage flower order branching. abscission varied both within and among species, the pattern of flower abscission was the same. Pods were set only on the lower flowers with subsequent abscission in the upper parts of the flower heads.

Lines of L. albus and L. mutabilis were noteworthy for their complete lack of pod shatter.

Data for seed characteristics are shown in Table 3. The lines of L. mutabilis had a uniformly high proportion of the seed weight in the embryo and were also comparatively low in fibre content in the seed. Some of these lines were also very high in seed oil content. Also noteworthy is the high total nitrogen content of some L. mutabilis lines, in some cases approaching nearly fifty percent crude protein $(N\%x \ 6.25)$.

All lines except L. albus c.v. Astra and Multolupa were bitter.

DISCUSSION

None of the introduced lines appeared to have sufficient potential to be examined further for forage purposes.

The lines of L. albococcineus, L. elegans, L. nanus and L. pubescens were bitter, had compact growth habit, small seeds, severe pod shatter and

Species	Line or C.V.	Time to flowering (weeks)	Primary flowers formed		Flower abscission (%)		Primary pods set		End of flowering (season)	Pod Shatter- ing*
		(weeks)								
Introduced										
L. alboccoccineus	770	12	69.7	(0.3)+	- 36.7	(*3.7)+	47.3	(5.6)+	Autumn	2
	775	11	70.3	(3.0)	50.4	(3.4)	34.6	(2.3)	Autumn	$\frac{1}{2}$
L. albus	771	9	20.3	(1.1)	73.3	(2.3)	5.5	(1.8)	Early Autumn (dry)	õ
	Astra	8	30.0	(2.5)	74.6	(2.0)	7.9	(1.2)	Early Autumn (dry)	Õ
	Multolupa		19.8	(0.9)	59.9	(3.8)	7.7	(0.5)	Early Autumn (dry)	Ő
L. angustifolius	862	12	36.8	(0.7)	60.9	(1.1)	14.4	(0.5)	Summer drought	3
•	Bitter Blu		37.8	(1.5)	60.0	(1.3)	15.1	(0.7)	Summer drought (late)	
L. elegans	734	12	75.1	(3.2)	65.8	(3.4)	25.3	(2.4)	First frost	$\frac{2}{2}$
C	776	13	49.7	(2.8)	42.1	(2.7)	28.4	(1.3)	Autumn	2
	782	14	50.2	(2.3)	37.4	(2.8)	31.3	(1.8)	Autumn	2
L. hirsutissimus	738	10	27.5	(2.1)	35.3	(5.0)	17.2	(1.4)	Early summer	3
L. hirsutus	779	11	16.3	(2.2)	25.8	(7.5)	12.0	(1.4)	Early summer	3
L. mutabilis	736	12	54.3	(1.8)	50.1	(2.7)	27.1	(1.8)	First frost	Ō
	777	11	59.6	(3.8)	44.5	(3.7)	33.8	(3.8)	First frost	1
	780	13	41.5	(1.9)	53.9	(2.5)	19.0	(0.8)	First frost	0
	785	12	54.2	(2.1)	50.9	(2.7)	26.5	(1.5)	First frost	ĩ
	792	12	39.9	(3.0)		.5) 16.8	(1.6)	(110)	First frost	1
	880	12	30.0	(1.6)	45.5	(1.8)	15.0	(1.4)	First frost	ô
	881	13	32.3	(3.3)	55.7	(4.0)	14.4	(2.0)	First frost	õ
	882	11	32.8	(2.4)	62.1	(3.1)	12.1	(0.9)	First frost	Ő
	883	11	34.3	(2.9)	64.3	(3.2)	12.5	(1.8)	First frost	0
	884	11	32.3	(1.5)	48.4	(3.2)	16.7	(1.3)	First frost	0
	885	12	37.2	(2.9)	74.9	(1.1)	9.3	(0.8)	First frost	0
L. nanus	768	10	-	(2.))	-	(1.1)	-	(0.0)	Early summer	3
La nunus	774	11	63.3	(3.6)	49.8	(3.9)	31.1	(2.0)	Early summer	3
	851	12	63.7	(6.4)	42.2	(4.3)	37.3	(6.8)	Early summer	3
L. pubescens	737	11	81.8	(3.2)	53.4	(4.5) (2.1)	38.0	(0.0) (2.1)	First frost	2
L. pubescens	778	12	80.2	(3.2)	45.9	(3.3)	42.9	(2.1) (2.3)	First frost	$\frac{2}{2}$
	781	11	61.0	(3.1)	47.6	(4.4)	31.8	(2.3) (2.8)	Heavy frost	22
	784	11	69.4	(3.1) (1.4)	52.9	(4.4) (2.0)	32.8	(2.8) (1.8)	Heavy frost	2
Established				. ,						_
L. angustifolius	Unicrop	11	39.9	0.7	60.3	2.3	15.7	0.7	Summer drought	0
0	Uniharves	t 11	36.5	1.3	65.1	2.7	12.6	0.9	Summer drought (late)	1
L. luteus	Weiko II	11	35.5	1.3	66.1	2.1	11.9	0.9	Summer drought	0

TABLE 2: Flower and seed setting data of lupins species

subjective scale 0-3, absent to severe.

standard deviation of mean.

unsatisfactory flowering habits for seed production. Further examination would appear to be unjustifiable in terms of seed production. However, these characteristics appear suited for use in ground stabilisation work.

The large seeded lines of L. albus, L. angustifolius and L. mutabilis appeared worthy of further examination. The seed characteristics of L. mutabilis lines were a considerable improvement over the established lines and had only two drawbacks. Limited frost resistance would restrict sowing dates. Masefield (1975) however, reported some lines of L. mutabilis were significantly frost resistant. The bitterness of all L. mutabilis lines was the other drawback. Brucher (1968) has already demonstratted that it is possible to obtain a sweet mutant and preliminary work is under way at Lincoln with this aim in mind.

We believe that there is real potential in L. mutabilis for improving the nutritional quality of seed produced by established lupin varieties and further trials to obtain reliable yield figures are planned.

ACKNOWLEDGMENTS

The assistance of Dr Margot Forde, Grasslands Division, D.S.I.R., Palmerston North in obtaining these introductions and the financial assistance of a D.S.I.R. Research Contract to G.D.H. are acknowledged.

REFERENCES

- Bailey, R.W. and Ulyatt, M. J. 1970. Pasture quality and ruminant nutrition. II. Carbohydrate and lignin composition of detergent-extracted residues from pasture grasses and legumes. New Zealand Journal of Agricultural Research 13: 591-604.
- Brucher, H. 1968. Die genetischen reserven Sudamerikas fur die kulturpflanzenzuchtung. Theoretical and Applied Genetics 38: 9-22.
- Masefield, G.B. 1975. A preliminary trial of the pearl
- lupin in England. Experimental Agriculture 11: 113-118.
 Hill, G.D. and Horn, P.E. 1975. A preliminary evaluation of Lupinus cosentinii in Canterbury. Proceedings Agronomy Society of New Zealand 5: 5-7.

Stoker, R. 1975. Effect of irrigation on yield and yield

TABLE 3: Seed data from lupin species										
Species	Line or C.V.	Testa colour (*speckle)	Seed Yield per plant (gm)	1000 seed wt. (gm)	% Embryo in total seed	Acid detergent fibre (%)	Oil content (%)	Total N content (%)		
Introduced										
L. albococcineus	770 775	Brown* Brown*	3.7 12.5	$\begin{array}{c} 21.7\\ 28.1 \end{array}$	82.8 83.4	21.4	$15.0 \\ 14.8$	$6.16 \\ 7.20$		
L. albus	771 Astra Multolupa	White White White	18.2 23.2	278.3 408.0 242.2	82.1 79.8	16.5 14.9	10.6	5.58 6.02		
L. angustifolius	862 Bitter Blue	Dark brown* Dark brown*	21.4	211.7 219.0	79.2 76.8	15.7	5.5 4.5	5.68 5.89		
L. elegans	734 776 782	Multicolour* Grey* Grey*	18.6 9.1 6.2	27.3 17.6 16.2	81.5 80.3	20.9 12.4 10.8	15.3 9.9 9.8	6.83 7.39 7.01		
L. hirsutissimus L. hirsutus L. mutabilis	738 779 736	Brown* Dark brown* White	3.5 1.1 15.3	12.5 24.9 154.9	76.3 78.5 86.9	17.4	10.7 	6.37 7.63		
L. mutaoms	777 780 785	Black/brown White White	* 34.3 11.7 22.9	37.8 143.2 83.5	85.9 86.3 87.3	 15.9	13.3 14.5	7.79 6.94 7.45		
	792 880 881	White White White	11.4 11.4 5.2	158.5 196.1 120.0	87.3 87.1 88.7	16.1 	16.3 15.9	6.69 7.04 —		
	882 [.] 883 884 885	White White White White	10.8 9.3 13.2 7.1	200.4 171.1 194.6 181.6	88.5 88.4 86.9 88.7	 10.6	18.6 16.4 16.8 12.1	6.92 7.81 7.50 7.99		
L. nanus	768 774 851	Grey Grey Grey		6.1 6.6 5.5		24.4	8.2 -	6.35 6.58		
L. pubescens	737 778 781 784	Multicolour* Multicolour* Multicolour* Beige	21.5 11.3 12.2 7.9	30.1 30.5 28.5 27.4	81.8 83.2 80.5 82.1	19.7 18.8 	14.4 12.1 14.8	7.45 7.14 5.48 -		
Established										
L. angustifolius	Unicrop Uniharvest	Beige* Beige*	19.2 21.6	191.6 187.2	76.7 77.4	17.2 17.4	4.6 4.6	5.52 5.45		
L. luteus	Weiko III	White	10.00	152.8	78.4	17.3	5.5	7.24		

components of sweet lupins. Proceedings Agronomy Society of New Zealand 5: 9-12.
Withers, N.J., Baker, C.J. and Lynch, T.J. 1975. Some effects of date, rate and method of sowing on lupin seed yield. Proceedings Agronomy Society of New Zealand 4: 4-8.
Withers, N.J. 1975. A spacing and defoliation study with
Unicrop lupins. Proceedings Agronomy Society of New Zealand 5: 13-16.
Withers, N.J., King, Susan and Hove, E.L. 1975. Seed weight, proportion of seed coat, and nitrogen content of several species of lupin; a note. New Zealand Journal of Experimental Agriculture 3: 331-332.