Weed seeds in white clover seed lots: losses during seed cleaning

K.A. Hill, R.P.C. Townsend¹, M.J. Hill and J.G. Hampton

New Zealand Seed Technology Institute, P.O. Box 84, Lincoln University, Canterbury. ¹Canterbury Seed Co. Ltd., P.O. Box 8143, Christchurch.

Abstract

In an examination of samples of field dressed and subsequently machine dressed seed lots of white clover cv. Merwi grown in Canterbury, seeds of 28 different weed species were detected. In field dressed seed lots weed content was dominated by suckling clover, hawksbeard, clustered clover, yarrow, wireweed, speedwell and viola. Seed cleaning successfully removed all the seeds of 21 of these 28 weed species. The implications of trying to remove the others, especially suckling clover, fathen, scarlet pimpernel, clustered clover, hedge mustard, field madder and field pansy are discussed in terms of the concurrent loss of white clover seed during cleaning. Cleaning losses ranged from 8% to nearly 30% of the white clover seed weight in the field dressed sample. Failure to control problem weeds pre-harvest can result in substantial financial losses as seed is cleaned in attempts to achieve purity standards.

Additional key words: field dressed seed, machine dressed seed, purity.

Introduction

Seed cleaning is the largest single cost in white clover seed production after heading. Currently the cost to the grower of having white clover seed cleaned (dressed) is approximately \$0.30-0.35/kg of machine dressed seed weight. A further consideration is the loss of valuable white clover seed (worth up to \$3.80/kg) during the removal of impurities.

In this paper we examine the number and types of weed seed species found in field harvested and subsequently machine cleaned seed lots of white clover (*Trifolium repens* L.) cv. Merwi and discuss the implications in terms of separation efficiency and potential financial loss of producing and cleaning white clover seed.

Materials and Methods

Ten seed lots of white clover cv. Merwi grown for the Canterbury Seed Co. Ltd. in the 1998/99 season were selected at random. All had been grown in Canterbury, with region of production ranging from Lincoln to Timaru. Samples of both field dressed (FD = as received for cleaning) and machine dressed (MD = after cleaning) seed were obtained for each of the ten seed lots and subjected to a purity analysis using internationally agreed methodology (ISTA, 1999). Following the separation of pure white clover seed, other seed and inert matter from the 2g purity working sample (ISTA, 1999), the weed seeds present were identified and the number of each species counted.

Data for FD and MD seed lot weights were obtained from Canterbury Seed Co. Ltd. records, and using the purity results, the weight of pure white clover seed in the FD and MD seed lots was calculated, as was the loss of white clover seed which occurred during cleaning.

Results

Weed seeds and their number recorded from the purity working sample differed among seed lots, but seeds of 28 different weed species were detected from the FD samples (Table 1). Suckling clover (*Trifolium* dubium) occurred in eight of the FD seed lots; hawksbeard (*Crepis capillaris*) and sowthistle (*Sonchus* oleraceus) occurred in seven of the FD seed lots, field madder (*Sherardia arvensis*) and yarrow (*Achillea*

	Common Name	Botanical Name	Total seeds in 10 FD lots	Total seeds in 10 MD lots	% remaining after cleaning
1	Catabfly	Silona galliga	2*	0	0
2	Chustered classer	Silene gailica	210	0	12
2	Clustered clover	Trijolium glomeralum	2*	4	1.5
2	Cockstoot	Dactylis glomerata	3* 0*	0	0
4	Combina	Polygonum convulvulus	2*	15	100
2	Fathen	Chenopodium album	13	15	100
6	Field madder	Sherardia arvensis	10	2	20
7	Field Pansy	Viola spp	38	2	5.3
8	Hairgrass	Vulpia spp	10	0	0
9	Hawksbeard	Crepis capillaris	537	0	0
10	Hedge Mustard	Sisymbrium officinale	19	3	15.8
11	Nipplewort	Lapsana communis	18	0	0
12	Rayless Chamomile	Matricama matricariodes	2*	0	0
13	Ryegrass	Lolium spp	114*	0	0
14	Scarlet pimpernel	Anagallis arvensis	12	4	33.3
15	Scentless Chamomile	Matricaria perforata	1000*	0	0
16	Scotch Thistle	Cirsium vulgare	1	0	0
17	Sheep's Sorrel	Rumex acetosella	7*	0	0
18	Shepherds Purse	Capsella bursa-pastoris	9*	0	0
19	Speedwell	Veronica arvensis	>1000	0	0
20	Sowthistle	Sonchus arvensis	26	0	0
21	Spurry	Spergula arvensis	9	0	0
22	Stinking Mayweed	Anthemis cotula	52*	0	0
23	Striated clover	Trifolium striatum	10	0	0
24	Suckling clover	Trifolium dubium	103	66	64.0
25	Vetch	Vicia spp	17	0	0
26	Willow weed	Polygonum persicaria	1*	Ő	0 ···
27	Wireweed	Polygonum aviculare	106	0	0
28	Yarrow	Achillea millefolium	131	õ	õ

Table 1.	Weed species found in 10 field dressed	(FD) and	10 machine	dressed ((MD) wl	hite clover	seed lots
	and percentage removed following dres	sing (clear	ning).				

* Only occurred in 1 or 2 of the 10 seed lots examined.

millefolium) occurred in four of the FD seed lots, and scarlet pimpernel (Anagallis arvensis), fathen (Chenopodium album), hedge mustard (Sisymbrium officinale), wire weed (Polygonum aviculare), speedwell (Veronica spp), and viola (Viola spp) occurred in three of the FD seed lots. Many of the weed species occurred in only one or two seed lots. One contained a large number of speedwell seeds. Another had a large number of scentless chamomile (Matricaria inodora) seeds.

Seed cleaning completely removed the seeds of 21 of the 28 weed species (Tables 1 and 2). Species still present after cleaning were suckling clover (4 seed lots), fathen, scarlet pimpernel, clustered clover (*Trifolium* *glomeratum*), and field pansy (two seed lots each), and hedge mustard, field madder and scentless chamomile (one seed lot each) (Table 2). The ability of the cleaning process to remove weed seeds depended on the species present, with all weed seeds removed in lots 5 and 8, but only around 70% in lots 7 and 10 (Table 2).

White clover seed losses during the cleaning process ranged from around 8% to nearly 30% of the white clover seed present in the FD sample (Table 3). In weight these losses ranged from 325 kg to 2.6 tonnes, so that potential income loss ranged from around \$1,000 to nearly \$10,000 (Table 3).

Total number of weed seeds		No of weed species		Weed seeds removed			
Seed lot	FD	MD	FD	MD	in cleaning (%)	Weed species not removed in cleaning	
1	212	16	14	4	92.5	Fathen, field madder, scarlet pimpernell	
2	82	3	8	1	96.3	Suckling clover	
3	1170	26	7	1	97.7	Suckling clover	
4	309	19	11	2	93.8	Clustered clover, Suckling clover	
5	115	0	5	0	100.0		
6	306	6	7	3	98.0	Clustered clover, Hedge mustard	
7	10	3	5	2	70.0	Field pansy, Scarlet pimpernel	
8	190	0	6	0	100.0	-	
9	1095	1	4	1	99.9	Scentless chamomile	
10	87	24	13	33	72.4	Fathen, Field pansy, Suckling clover	

Table 2. Purity analysis of the working sample for ten field dressed (FD) and machine dressed (MD) lots of white clover cv. Merwi.

 Table 3. Losses of pure white clover seed during cleaning for ten seed lots of cv. Merwi.

Seed	Pure wh seed	ite clover (kg)	Loss of pure white clover seed in cleaning				
lot	FD	MD	kg	%	value (\$)		
1	7606	6150	1456	19.1	5533		
2	4425	3966	459	10.4	1744		
3	7390	6234	1156	15.6	4393		
4	3607	2936	671	18.6	2549		
5	4190	3865	325	7.8	1235		
6	9280	7225	2055	22.1	7809		
7	7420	6831	589	7.9	2238		
8	6580	4874	1706	25.9	6483		
9	8400	6427	1973	23.4	7497		
10	8810	6200	2610	29.6	9918		
At a price of \$3.80/kg							

Discussion

Depending on seed lot, from five to 14 different weed species were recorded from FD seed, with the number of weed seeds found in the 2g purity working sample ranging from 10 to over 1000. The weed spectrum differed among paddocks, but as data for previous paddock history, cultivation and crop establishment method, and herbicide regimes are not available, any comment would be speculative. It seems however, that some growers relied heavily on the seed cleaning process to achieve a seed lot purity capable of meeting contractual and seed certification standards.

Of the 28 weed species recorded, cleaning successfully removed seeds of all but seven of them. These were suckling clover, fathen, field madder, scarlet pimpernel, hedge mustard, clustered clover and field pansy. All but suckling clover have previously been reported to be common contaminants of New Zealand white clover seed lots (Dingwall, 1969; Rowarth *et al.*, 1990; 1995); suckling clover has been previously classified as an 'other crop' species rather than a weed (Scott and Hampton, 1985), and is a common reason for the down grading or rejection of white clover seed lots from certification (Young and Hampton, 1987).

In seed cleaning the objective is to select machines and machine settings which will remove the contaminating material with the smallest loss of crop seed. Efficient seed cleaning requires skilled operators (Hartley, 1990) but even the most skilled operator has trouble in removing weed seeds which resemble white clover seeds closely in shape, length and weight (e.g., suckling clover, field madder and sheep's sorrel; Young and Hampton, 1987). All ten seed lots examined in this study had MD purities which met the weed seed requirements of seed certification. However, to achieve these purities, from 8 to 30% of the white clover seed was removed from the seed lots along with the weed seed, and the reason for this range of losses can mostly be explained by the weed seed content of the FD lots. Lots 2, 5, 7 and 10 had the least number (<120) of weed seeds in the purity analysis sample, and for the first three, the bulk of these weeds were removed readily so that crop seed dressing losses were 10% or less. The

exception in this group was seed lot 10, where presumably the seed cleaning operator tried unsuccess-fully to remove the high levels of suckling clover, resulting in a crop seed dressing loss of 30%. It is therefore not only the number of seeds in the lot, but also the species which can have a major effect on seed cleaning efficiency. The other six seed lots all had >200 weed seeds per purity analysis sample, and because of this greater weed load, more crop seed (16 to 26%) was lost in the process.

A dressing loss of 20% or more (O'Neill, 1990) may be acceptable to growers, particularly if it means that the seed lot will then meet purity standards. However, it can also be a significant financial loss because of the quantity of crop seed lost during cleaning.

Conclusions

White clover seed growers should not expect seed cleaning operators to solve their weed seed problems. Weeds which cannot be controlled in clover (such as yarrow, docks and field madder) should be eradicated in the preceding five year crop rotation (Clifford *et al.*, 1996). Problem establishment weeds (such as suckling clover and sheep's sorrel) can now be controlled by registered herbicides (Allen, 1996).

Acknowledgement

We thank the Canterbury Seed Co. Ltd., for providing access to FD and MD white clover seed lots.

References

Allen, D. 1996. The practicalities of managing cultivar change. In White clover: New Zealand's Competitive Edge (ed. D.R. Woodfield), pp 25-27, Agronomy Society of New Zealand Special Publication No. 11 / Grassland Research and Practice Series No. 6, Agronomy Society of New Zealand, Christchurch; New Zealand Grassland Association, Palmerston North.

- Clifford, P.T.P., Sparks, G.A. and Woodfield, D. 1996. The intensifying requirements for white clover cultivar change. In White clover: New Zealand's Competitive Edge (ed. D.R. Woodfield), pp 19-24, Agronomy Society of New Zealand Special Publication No. 11 / Grassland Research and Practice Series No. 6, Agronomy Society of New Zealand, Christchurch; New Zealand Grassland Association, Palmerston North.
- Dingwall, A.R. 1969. The harmful effects of weeds. Proceedings of the New Zealand Weed and Pest Control Conference 22, 127-132.
- Hartley, J.R. 1980. Handling herbage seed from the grower to the consumer. In Herbage Seed Production (ed. J.A. Lancashire), pp 96-98, Grassland Research and Practice Series No.1., New Zealand Grassland Association, Palmerston North.
- ISTA, 1999. International rules for seed testing. Supplement to Seed Science and Technology 27, 1-333.
- O'Neill, P. 1990. Seed processing. In Management of Grass Seed Crops (ed. J.S. Rowarth), pp 35-36, Grassland Research and Practice Series No. 5, New Zealand Grassland Association, Palmerston North.
- Rowarth, J.S., Johnson, A.A., Clifford, P.T.P. and Rolston, M.P. 1990. Weed seed contamination in white clover seed lots. *Proceedings of the New Zealand Grassland Association* 52, 99-102.
- Rowarth, J.S., Johnson, A.A., Rolston, M.P. and Clifford, P.T.P. 1995. Weed seeds in white clover and ryegrass seed lots: an aspect of seed quality. *Proceedings* Agronomy Society of New Zealand 25, 55-58.
- Scott, D.J. and Hampton, J.G. 1985. Aspects of seed quality. In Producing Herbage Seeds (eds. M.D. Hare and J.L. Brock), pp 43-52, Grassland Research and Practice Series No. 2, New Zealand Grassland Association, Palmerston North.
- Young, K.A. and Hampton, J.G. 1987. Damaged weed seed in ryegrass and white clover seed lots. *In* Annual Report 1986, Official Seed Testing Station (ed. J.G. Hampton), pp 34-39, Ministry of Agriculture and Fisheries, Palmerston North.