WINTER FORAGE CROPS IN CANTERBURY

R.C. Stephen

Field Research Section, Research Division Ministry of Agriculture and Fisheries Private Bag Christchurch

SUMMARY

Forage yield data were obtained in field experiments in Canterbury from two cultivars of beet, marrow-stemmed kales, rapes, turnips, cereal green-feeds and turnip/ ryegrass greenfeed mixtures. Overall the beets gave highest yields of dry matter and were followed in order of declining yields by marrow-stemed kales, turnips, turnip/ ryegrass greenfeed mixtures, swedes, rapes, ryegrass greenfeeds and cereal greenfeeds.

INTRODUCTION

In Canterbury, growth of irrigated and non-irrigated pastures on Lismore soils is limited in winter months by low soil temperatures and under these conditions, supply inadequate quantities of feed for sheep and cattle (Rickard 1968). Consequently in Lismore and other similar soils it is common practice to cultivate forage crops for feeding *in situ* to livestock in the late winter and early spring months. Each year some 90,000 hectares or 8% of the total area of arable soils in Canterbury are sown in winter forage crops comprising beets, swedes, marrow-stemmed kales, turnips, rapes, lupins, cereal and ryegrass greenfeeds and various mixtures of these crops (Anon 1970).

In the past, local research effort has been directed to the improvement of individual winter forage crops through selection and breeding for either resistance or tolerance to diseases and pests (Calder, 1939, 1944., Lobb 1951, van Steveninch 1956., Palmer 1960, 1965., and Lammerinck 1968). Little has been done to assess the relative values of individual crops as sources of winter forage. This paper gives details of field experiments designed to facilitate comparisons of winter forage crops and their cultivars.

MATERIALS AND METHODS

The winter forage crops were established in the early summer on areas of shallow soils near Hinds and Rokeby in 1968 and at Seafield in 1969. On each site two cultivars of swedes *Brassica napus*, L, marrow-stemmed kales *Brassica oleracea* L, turnips *Brassica rapa* L, cereal greenfeeds *Avena sativa* L, *Secale cereale* L, and ryegrass greenfeeds *Lolium spp.* were sown in cultivated seedbeds at seeding rates and at times local commercial farmer experience had shown to be satisfactory. At Rokeby and Seafield two rape cultivars *Brassica napus* L were also sown and additionally at Seafield two beets *Beta vulgaris* L.

The crops were sown in main plots each 5 m x 30 m in randomised blocks replicated four times. The cultivars of each crop were sown in sub-plots each 2.5 m x 30 m. The rapes, turnips, cereal greenfeeds, ryegrass greenfeeds and turnip/ryegrass greenfeed mixtures were drilled in 18 cm rows, the swedes and marrow-stemmed kales in 36 cm rows and the beets in 54 cm rows. Each crop was drilled with molybdic reverted superphosphate at the rate of 250 kg/ha.

Apart from the beets at Seafield, none of the crops was given additional cultural treatments after establishment and prior to harvest. At Seafield approximately 25 mm of water was applied immediately after seeding to the beets which, after establishment, were thinned and singled.

In the late winter each field experiment was sampled for yield data. At one site, Rokeby, plots were also sampled in the early winter. The crop samples were cleaned, where necessary dissected into either leaf and bulb components or leaf and stalk components, weighed and sub-samples taken for dry matter determinations as recommended by Lynch (1960). Dry matter determinations were made using standard techniques (Lynch 1960).

RESULTS

In the summers and early autumns of 1969 and 1970, high temperatures and normal drought conditions were experienced. The crops established well but made little growth before the onset of lower temperatures and damper conditions in the autumn. In both years, crop growth continued well into the winter.

At Hinds and Rokeby, the aphid *Brevicoryne brassicae* became established in swede, marrow-stemmed kale and rape crops and the ryecorn greenfeed crops became infected with leaf rust *Puccinia graminis*. At Hinds the soft turnips became infested with larvae of diamond-backed moth *Plutella maculipennis*.

At Seafield, the cereal greenfeed Amuri oats matured early and produced grain before the onset of winter. Cultivar forage yields are given in Table 1. Apart from Giant marrow-stemmed kale at Seafield, which yielded significantly ($P \le 0.05$) more forage than Thousand Headed marrow-stemmed kale, none of the other members of paired crop cultivars differed significantly in their dry matter yields.

Site	Hinds		Rokeby		Seafield				
Harvest Date	14.7.69		28.7.69			1.7.70			
Beets Swedes Marrow-stem -med Kales Rapes Turnips	Calder Doon Spartan Giant Maris Kestrel Green Globe Kapai	3039 2658 4487 4106 3040 3911	cdeCDE deDEF aA abAB cdBCDE	Calder Doon Spartan Giant Maris Kestrel Moana Rangi Green Globe Kapai	5680 5060 6470 6150 5050 5480 6640 6600	abcABC cdABC abAB abcAB cdBCD bcABCD abAB abAB	Orange Globe Korsroe Calder Wilhlemsberger Giant Thousand headed Moana Rangi Green Globe Kapai	13360 13650 5990 cde 6820 cd 10480 b 7500 c 3710 ef 4650 cdef 5190 cdef 6160 cde	aA aA CD BC AB BC CD CD CD CD CD
Cereals	Amuri oats CRD ryecorn	1323 1874	gG fgFG	Amuri oats CRD ryecorn	3440 3440	eE eE	Amuri oats CRD ryecorn	2270 f 2230 f	D D
Ryegrasses	Paroa Tama Green Clobe &	2205 2072 3542	efEFG deDEF bcABCD	Paroa Tama Green Globe &	4010 3800 7000	deCDE deDE	Paroa Tama Green Globe &	3930 def 3880 def 5100 cdef	CD CD
Ryegrass mitures	Paroa Green Globe & Tama	3815	abABC	Paroa Green Globe & Tama	6190	abcAB	Paroa Green Globe & Tama	4850 cdef	CD

TABLE 1: Cultivar Forage Yields – dry matter kg/ha

EV -

16.3%

29.6%

TABLE 2: Crop Forage Yields * - dry matter kg/ha

Site	Hinds	Rokeby	Seafield	
Harvest Date	14.7.69	28.7.69	1.7.70	Mean
Beets Swedes Kales Rapes Turnips Cereal Greenfeeds Ryegrass Greenfeeds Turnip/ryegrass Greenfeeds C.V.	3,190 cCD 4,800 aA 3,900 bBC 1,790 dE 2,730 cD 4,140 baB 16.0%	6.015 bcAB 7,070 abAB 5,890 cB 7,420 aA 3,690 dC 4,370 dC 7,380 aA 16.3%	15,130 aA 7,210 cC 10,080 bB 4,680 deCD 6,360 cdC 2,520 eD 4,380 deCD 5,560 cdC 29.6%	5,470 7,320 5,290 5,890 2,670 3,830 5,690

* Means of cultivar yields

Crop forage yields are given in Table 2. Of the crops included in both years the marrow-stemmed kales gave the highest mean yields (overall) followed in order of declining yield by turnips, turnip/ryegrass greenfeed mixtures, swedes, rapes, ryegrass and cereal greenfeeds. In the single experiment including beets (Seafield), the yields of this crop outyielded all others.

At Rokeby, where the experimental crops were harvested on two occasions, the early-winter forage yields were lower than the late-winter yields. However, relative forage yields did not differ.

Sites		Hinds	Rokeby	Seafield	Mean
Crops	DM/ME Conversion factor				
Beets Swedes Kales Rapes Turnips Cereal Greenfeeds Ryegrass Greenfeeds	3.0 3.1 2.9 3.0 3.0 2.7 2.8	9,570 13,920 11,700 3,938 7.644	18,045 20,503 17,670 22,260 8,118 12,236	45,390 21,630 29,232 14,040 19,080 5,544 12,264	16,420 21,220 15,580 17,680 5,870 10,720
Greenfeed Mixtures	2.9	12.006	21,402	16,124	16,510

TABLE 3: Crop Forage Yields * - metabolizable energy Mcal/ha.

* Means of cultivar yields.

In the field experiments described winter forage crops yielded comparatively large quantities of a feed at a time in the year when grass/clover and lucerne pastures provide negligible quantities of feed. In both seasons there was no pasture growth on sites adjacent to the experiments. In fact the higher-yielding forage crops produced as much material as would normally be expected from a full year's non-irrigated growth of either grass/clover pasture (Rickard, 1968) or lucerne (Stephen, 1970).

Forage yields of beets are available from only one experiment, but in it they yielded 50% more than the next highest yielding crop, marrow-stemmed kale. However, it may be argued that the application of water may have had some beneficial effect on beet yield. This coupled with the fact that beet was only included in 1 experiment suggests that more experimentation on beet versus other crops is desirable.

Crop yields vary with the length of the growing period and the rate of dry matter accumulation. Turnips have a comparatively high mean rate of dry matter accumulation and in a shorter period produced as much forage as was produced by the swede crops.

The yields of the turnip/ryegrass greenfeed mixtures tended to be greater than those of the ryegrass greenfeeds drilled alone but differed little from those of the turnip crops. These yields suggested that there is little advantage in terms of winter forage yields to be derived from the common practice of drilling ryegrasses with turnips.

In his consideration of the values of feed for ruminants, Bryant (1971) urged use of the concept of metabolizable energy to assess the qualities of feeds. Jagusch and Coop (1971) using locally derived data have produced dry matter/metabolizable energy conversion factors for a wide range of common feeds. Use of their conversion factors to calculate winter forage yields in terms of metabolizable energy (Table 3) indicates that the relative productivity of crops in terms of dry matter kg/ha differs little from that expressed in terms of metabolizable energy Kcal/ha.

Apart from Giant and Thousand Headed marrow-stemmed kale, none of the other members of paired crop cultivars differed in forage yields. The failure of crop cultivars to differ in forage yields prompts the question whether plant breeders have sought improvement in those individual crop characteristics which have the greatest influence on forage yields.

Overall, the late winter forage yields of the marrow-stemmed kales were respectively almost three times and almost twice as great as the forage yields of cereal greenfeeds and ryegrass greenfeeds. With the other crops occupying an intermediate position while greenfeeds may have a place as "catch" crops, the question arises whether research effort is worthwhile on crops having low potential yields. The high yields of the kales (and possibly beet) suggest that more agronomic research would be more profitable on these crops.

ACKNOWLEDGEMENTS

The author acknowledges the skilled assistance provided in the conduct of the field experiments by Messrs. B.W. Todd and T.N. Kemp, the estimation of forage dry matter contents by staff of the Herbage Laboratory, Winchmore Irrigation Research Station, Ashburton, the co-operation of farmers, Messrs. D.G. Scott, Rokeby, K.L. McConnell, Hinds, and R.R. Mitchell, Seafield, who made available experimental sites.

REFERENCES

Anon. (1972):	Agricultural Statistics for the Season 1969/70. Department
Bryant A M (1971)	of Statistics, wellington, Government Printer, wellington, 1972. Methods of Expressing Feed Requirements
bryant, A.M. (1771).	Proceedings of the New Zealand Society of Animal production
	<i>31:</i> 187-195
Calder, R.A. (1939):	Marrow-stem Kale.
	New Zealand Journal of Science and Technology. A21: 223-229.
(1944):	Marrow-stem Kale: Further investigation.
	New Zealand Journal of Science and Technology. A26: 41-50.
Jagusch, K.T. and Coop, J.	E. (1971): The Nutritional Requirements of Grazing Sheep.
	Proceedings of the New Zealand Society of Animal
	Production 31: 224-234.
Lammerinck, J (1968):	Rangi Rape.
	New Zealand Journal of Agriculture 117: 61
Lobb, W.R. (1951):	Resistant Type of Rape for Areas Infected with Club-root.
	New Zealand Journal of Agriculture 82: 65-66.

Lynch, P.B. (1960):	Conduct of Field Experiments. New Zealand Department of Agriculture Bulletin No. 399: 113-116.
Palmer, T.P., (1960):	Aphid Resistant Rape. New Zealand Journal of Agriculture 101: 375-376.
(1965):	New Turnip: Kapai
	New Zealand Journal of Agriculture 111 55.
Steveninch, van R.F.M. (1956);	Borre, A New Sweet Blue Lupin Variety. New Zealand Journal of Agriculture 93: 215-216.
Rickard, D.S., (1968):	Climate, Pasture Production and Irrigation. Proceedings of the New Zealand Grassland Association 30: 81-92.