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Abstract 

This is the second of two manuscripts describing statistical methods for analysing multi-site plant variety tri-

als.  In this paper, we summarise methods for estimating and comparing genotypic means across sites.  These in-

clude analysis of variance, nonparametric methods for testing genotypic effects, and some methods for selecting 

high-yield and stable genotypes including joint regression, segmented regression, principle co-ordinate analysis, 

general superiority measure, yield-stability statistic, safety-first, expected utility maximisation and desirability 

index. 
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Introduction 

The existence of Genotype by Environment (GE) 

interactions is well documented in the plant breeding 

literature.  Although selecting specific genotypes for 

specific environments is the best way to utilise GE in-

teractions, it may not be practicable.  GE interactions 

usually cannot be related to a single or even a few en-

vironmental factors, thus it may be not possible to 

group cultivation environments into groups which give 

the same GE response.  If the cultivation environments 

can be grouped, then limited resources for plant breed-

ing may dictate that stable genotypes with wide ap-

plicability are the best option.  Because good perfor-

mance is the main objective of plant breeding, selec-

tion of stable genotypes means that simultaneous selec-

tion for good performance and stability is needed.  

Therefore, breeders must weigh the importance of a 

genotype's stability relative to its mean performance 

across sites.  Methods have been suggested to assist in 

the simultaneous selection of yield and stability and 

some of these are summarised in this paper. 

 

Estimating and comparing genotypic 

means across sites 

The genotypic mean across sites is an important indica-

tor of the potential of the genotype to be successful in 

the whole production region.  Therefore, an accurate 

assessment of yield performance of new genotypes 

across environments is crucial for plant breeding pro-

grams (Cullis et al., 1996). 

 

Estimating genotypic means across sites 

The simplest way to estimate the across-site mean 

is to take the arithmetic average.  However, the arith-

metic average is an unbiased estimate only if all geno-

types are tested at all the sites and the genotypic mean 

variance is homogenous. 

When not all the sites contain all the genotypes, but 

the genotypic mean variance is homogenous, the least 

square means can be used to account for the different 

numbers of test sites for different genotypes.  This is 

the ‘fitting constants’ method (Searle, 1971).  When 

genotypes are absent in environments with generally 

high responses, their means are corrected upwards.  

Means for genotypes absent in unfavourable environ-

ments will be corrected downward (van Eeuwijk, 

1995).  The general linear model (GLM) for analysis of 

variance provided by statistical software such as SAS 

and Genstat includes the fitting constants method as 

one option.  However, the assumption underlying this 

method is that there is no genotype-by-site interaction; 

this clearly is unsatisfied by most of the multi-site 

tests.  

Gauch and Zoble (1990) proposed a method based 

on an expectation maximisation algorithm to input the 

missing values by use of the additive main effects and 

multiplicative interaction effect (AMMI) model.  The 



Agronomy N.Z. 31, 2001 26 Analysing multi-site plant variety trials. II 

AMMI model was discussed in the first paper of this 

review (Ye et al., 2001).  The Gauch and Zoble (1990) 

method involves the following steps: 1) Compute cell 

means for every cell with data, then initialise the addi-

tive parameters by computing the unweighted genotype 

means, environment means and grand mean. 2) Initial-

ise the interaction residuals as usual for cells with data, 

but input an interaction residual of zero for missing 

cells. 3) Solve the multiplicative parameters. 4) Re-

estimate and revise each missing cell with the current 

AMMI model. 5) Fit the AMMI model to these revised 

data. 6) Iterate this process until convergence, i.e., the 

imputed missing values show acceptably small chang-

es. 

A more efficient method to deal with unbalanced 

GE data is to use a mixed model by assuming either 

genotype or environment effects to be random.  Using 

this method the predicted means of the unobserved 

cells (genotype and environment combination) can be 

obtained by replacing the necessary terms in the model 

with their expected value.  In other words, all the ran-

dom effects are set to zero and the fixed effects to their 

generalised least squares estimate.  Indeed, the predict-

ed mean for any cell corresponds to the hypothetical 

means that would have been obtained if the data were 

orthogonal and equally replicated (van Eeuwijk, 1995).  

Whether the genotype or environment effect is as-

sumed to be random depends on the situation.  In gen-

eral, an effect can be regarded as a random effect if the 

levels of the effect may reasonably be assumed to 

come from a probability distribution (Maclean et al., 

1991; Stroup and Multize, 1991; Piepho, 1994).  In 

practice the random effect should have sufficient de-

grees of freedom (say 10) to allow proper checking of 

the distributional assumptions about this effect (Stroup 

and Multize, 1991). 

When the genotypic mean variances are not homo-

geneous, the estimation of genotypic means becomes 

more complicated.  Unfortunately, genotypic mean 

variances are usually not homozygous across sites due 

to the heterogeneity of the genotype-by-environment 

interaction which is an indicator of different stabilities 

of tested genotypes and/or the heterogeneity of the 

within site experimental errors.  In this case, the 

across-site genotypic means (arithmetic) are mostly 

affected by the mean from the sites with larger vari-

ances, and the generalised or weighted least squares 

method is a method to get more precise estimates.  Us-

ing this method, observations in different sites are 

weighted by the reciprocal of the error mean squares of 

the site.  Thus, the genotypic means from the sites with 

higher precision have a greater influence on the estima-

tion.  By defining a weight factor in the GLM model, 

the weighted least squares means can be obtained easi-

ly if all effects are regarded as fixed.  Another method 

is to use a mixed model.  The heterogeneous variances 

can be taken into account in mixed model analysis by 

correctly defining the two variance/covariance matrices 

(see Ye et al., 2001).  SAS procedure MIXED is very 

useful in analysing multi-site data sets.  Using the 

‘REPEATED /SUB = SITE TYPE = UN’ statement, a 

site-specific error variance will be generated, and the 

estimate for fixed effect and the prediction for random 

effect will be obtained. 

Using within environment error variances estimated 

directly from the observed data as weights has been 

criticised by many authors.  For instance, more weight 

is usually given to the less productive sites since the 

error variance is usually positively correlated to the 

environmental yield response (Gauch, 1988; Crossa, 

1990).  Some authors have argued that more weight 

should be put on the more productive sites because 

they are of more interest to the experimenters (Gauch, 

1988; Crossa, 1990).  To overcome this problem Cullis 

et al. (1996) and Frensham et al. (1997) first modelled 

the error variances as a function of the log of site mean 

yield and other environmental variables.  The predicted 

error variances from the prediction equation were then 

used as weights for estimating genotypic means across 

sites.  The advantages of this procedure are: 1) It pro-

vides insight into those factors affecting error variance. 

2) The influence of data recording and transcription 

errors is reduced. 3) It does not require that the addi-

tivity or homogeneity assumption is true for the other 

random effects. 

Using error variances as weights does not take the 

heterogeneity of the genotype-by-environment interac-

tion mean square into account.  This can be overcome 

by weighting the genotypic means by the reciprocals of 

the residual mean squares, which includes both the 

interaction and the error variances (Bernardo, 1992). 

The heterogeneous interaction variance can also be 

dealt with using the MIXED procedure of SAS.  Using 

the ‘REPEATED / GROUP = GEN TYPE = UN’ 

statement, a genotype-specific variance can be generat-

ed.  As for the error variance, Frensham et al. (1997) 
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proposed a method that models the GE interaction var-

iances by a log-linear function of the explanatory vari-

ables.  This approach produces a GE interaction vari-

ance for each genotype.  Alternatively, Denis and 

Dhorne (1989) modelled the GE interaction variance 

using genotypic and/or environmental variables direct-

ly in the mixed model analysis.  This is method is 

known as the ‘mixed factorial regression’. 

When the weighted least square method is used, the 

following points apply.  Firstly, unless the variances 

are quite different, the simple arithmetic means are still 

valid, although the significance tests using a pooled 

error are no longer valid.  Secondly, the weighted 

means can lose their expected superiority over the 

arithmetic mean if the estimated variances lack suffi-

cient precision (Yates and Cochran, 1938).  This was 

further confirmed by Bernardo (1992) using a maize 

yield trial containing 34 varieties and 53 environments.  

Thirdly, multi-site testing data usually exhibit large 

ranges in site mean yields so that much of the hetero-

geneity may be related to scale.  Therefore, data trans-

formation may be necessary to remove scale-dependent 

heterogeneity; otherwise, misleading interpretation of 

the heterogeneity may be obtained (Frensham et al., 
1997). 

 

 

Compare genotypic means across sites 

Generally the purpose of multi-site testing is the 

statistical estimation of genotypic performance.  Breed-

ers are also interested in comparing the genotype 

means across environments.  Analysis-of-variance 

(ANOVA) combined with multiple comparisons is 

normally used by breeders to achieve this objective.  

Nonparametric methods have also been suggested by 

different authors to be used when the assumptions un-

derlying ANOVA cannot be satisfied. 

 

ANOVA 

For convenience, assume there are ‘v’ genotypes 

tested in ‘s’ environments with ‘b’ replications in a 

randomised block design and ‘n’ individuals planted 

within each plot.  The general model for analysing a 

multi-site test based on cell (plot) means can be written 

as: 

 

ijkijjkjiijk gebegy   )()(  , 

where ijky  is the mean of the i-th genotype in the j-th 

environment in the k-th block,  is the overall mean, 

g i  is the effect of the i-th genotype, e j  is the effect of 

the j-th environment, )( jkb is the effect of k-th block in 

j-th environment, ijge)(  is the interaction of the i-th 

genotype with the j-th environment, and ijk  is the er-

ror associated with the mean of the i-th genotype in the 

j-th environment in the k-th block. 

When all genotypes are tested at all the sites and the 

within-site error variances are homogeneous, ANOVA 

based on the cell means is the simplest method to com-

pare the genotypes.  The ANOVA table is given in Ta-

ble 1.  If both genotypic and environmental effects are 

assumed to be fixed, or genotypic effects are random 

and the environmental effects are fixed, the signifi-

cance of genotypic differences can be tested by F = 

MSG/MSE with (v-1) and (v-1)s(b-1) degrees of free-

dom.  Assuming that genotypic effect is fixed and en-

vironmental effect is a random effect or if both effects 

are random, the significance of genotypic difference 

can be tested by F = MSG/MSGE with (v-1) and 

(v-1)(s-1) degrees of freedom. 

 

Table 1. Combined analysis of variance for multi-

site data. 

source df MS F 

Genotype v-1 MSG MSG/MSGE 

Site s-1 MSE  

Block(Site) (b-1)s MSB  

Genotype*Site (v-1)(s-1) MSGE  

Error (v-1)s(b-1) MSE  

 

When the within-site error variances are not homo-

geneous, most practitioners use some form of trans-

formation to remove the heterogeneity before ANOVA 

is done on the transformed data.  However, the inter-

pretation of the results from analysing transformed data 

may become difficult or biologically meaningless.  For 

most multi-site tests, if ANOVA is used just to test the 

difference between genotypes, using original data di-

rectly does not create much bias (Crossa, 1990).  How-

ever, the test for an interaction can be misleading be-

cause too many significant results are produced (Cros-

sa, 1990).  An alternative is to combine sites into 

groups that have homogenous within group variance, 

and the combined analysis is done for each group sepa-
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rately.  However, the results from different groups can-

not be combined to give a recommendation over all the 

sites. 

Sometimes, instead of the plot means the genotypic 

means at each site have to be used to perform an 

ANOVA.  In this case, the interaction and the experi-

mental error cannot be separated.  The ANOVA table 

is given in Table 2.  The usual assumptions for an 

ANOVA are more difficult to satisfy because the inter-

action mean squares for genotypes are unlikely to be 

the same and the covariances between a pair of geno-

types are also unlikely to be the same. 

 

Table 2. ANOVA of multi-site testing data based 

on genotypic means at each site. 

Source df MS F 

Genotype v-1 MSG MSG/MSGE 

Site s-1 MSE  

Residual (v-1)(s-1) MSGE  

 

However, an ANOVA can be valid under a less re-

strictive assumption about the variance-covariance 

structure.  The sufficient and necessary condition for a 

valid ANOVA is the circularity structure of the vari-

ance-covariance matrix (Winer et al., 1992).  In the 

context of a GE two-way table, this condition requires 

that for each pair of genotypes ‘i’ and ‘k’, the quantity 

  ii kk ik  2  is a constant, where ii and kk are 

the variances of the i-th and k-th genotypes respective-

ly, and ik is the covariance between the i-th and k-th 

genotypes.  In other words, the variance of the differ-

ence between the observations of genotype ‘i’ and ‘k’ 

in the same environment is the same. 

When circularity is violated, the F-test for the sig-

nificance of the differences between genotypes F = 

MSG/MSGE can be approximated by the F-

distribution with (v-1) and (v-1)(s-1) degrees of free-

dom, where  is a measure of departure from circulari-

ty.  If the  value is less than 0.8, the departure from 

the circularity is serious.  The  can be estimated by 

using the sample variances and covariances as suggest-

ed by Geisser and Greenhouse (1958): 
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where sik is sample covariance of the i-th and k-th gen-

otypes, 
v

s
s i ii
..  is the average of all genotype 

variances, 
2v

s
s i k ik
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
  is the pooled covariance 

between all pairs of genotypes, and s
s
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 is 

the average covariance between the i-th genotype and 

all other genotypes. 

Huynh and Feldt (1976) gave a modified estimate 

of ,  
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which is preferable when   is not much smaller than 

unity. 

When the number of sites is larger than the number 

of genotypes, the circularity of the covariance structure 

can be tested by Mauchley’s procedure and the Ho-

telling multivariate T
2
 test.  Because this is rarely the 

case in plant variety tests, the detail of these methods 

are not given, but interested readers can refer to Winer 

et al. (1992) and Piepho (1996). 

When multiple comparisons between means are 

made under the condition that circularity is violated, 

one may use paired t-tests.  That is, to carry out two-

way ANOVA for each pair of genotypes separately 

(the ‘lsmeans’ statement associated with MIXED of 

SAS provides this pair-wise comparison) and the ex-

periment-wise error rate can be controlled using the 

Bonferroni procedure: the paired comparisons are per-

formed at the 2/(v-1)v significant level, where  is the 

predetermined significance level. 

 

Nonparametric methods 

In the previous section a method was introduced to 

deal with the situation when the underlying assump-

tions of the ANOVA are violated.  Some nonparamet-

ric methods, which do not rely on any restrictive as-

sumption, may be used as alternatives.  All nonpara-

metric methods transform the original observations 

into ranks, which are then used for subsequent anal-

yses.  Because we are only interested in testing the 
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genotypic effect, in the following sections, only meth-

ods for testing the genotypic effect are introduced. 

 

 

1. Hildebrand (1980) method: The original observa-

tions are expressed as the differences from the rep-

lication mean, then the differences are transformed 

into a singe rank order.  The test statistic, 

12

1

2

1v vsb
R Ri

i

v

( )
( ).. ...





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is approximately 
2
-distributed with (v –1) degrees 

of freedom. 

 

2. Kubinger (1986) method: The original observations 

are ranked into a single rank order (Rijk), then the 

ranks are transformed by subtracting the average 

rank over replicates ( Rij . .) and adding the overall 

rank of the genotype ( Ri .. ), that is, 

R R R Rijk ijk ij i
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is approximately 
2
-distributed with (v –1) degrees 

of freedom. 

 

3. Van der Lann-de Kroon (1981) method: The origi-

nal observations are ranked for each site separately 

into the ranks (Rijk).  The test statistic, 

)1(3
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is approximately 
2
-distributed with (v –1) degrees 

of freedom. 

 

 

When comparisons among genotypes are made the 

sign test or the signed Wilcoxon test can be used (they 

are available in most commercial statistical software).  

Again, the significance level needs to be modified us-

ing the Bonferroni procedure.  In addition, the Spear-

man and the Kendall rank coefficient can also be used 

for each pair of genotypes. 

Selection for yield and stability 

Joint regression analysis 

Finlay and Wilkinson (1963) developed a method to 

study genotypic stabilities using multi-site testing data.  

This method is now known as joint regression analysis.  

It consists of regressing genotypic means at each site 

onto the environmental indexes defined as the envi-

ronmental means.  The stable genotypes are those with 

regression coefficients less than one. 

 

Westcott (1987) method 
Westcott (1987) proposed a method based on prin-

ciple coordinate analysis.  His definition of the dissimi-

larity between two genotypes in a given environment is  

S i k
y y y

y y
j

mj ij kj

mj lj

( , )
( ) /


 



2
 , 

where ymj  and y lj  represent the genotypes with the 

highest and lowest mean performance in the j-th envi-

ronment, respectively; yij and ykj are the mean perfor-

mance of genotypes i and k in the j-th environment, 

respectively.  When more than one environment is con-

sidered the similarity between the i-th and k-th geno-

types is the mean of S i kj ( , )  across environments.  

The measure of similarity between any pair of geno-

types compares their average performance with the 

best genotype ( ymj ) in a given environment.  Geno-

types with smaller S i kj ( , ) values are closer to ymj . 

This method can be used for selecting stable geno-

types.  The testing environments are ranked in de-

scending order according to their means (i.e., environ-

mental index); the sites outside the lower and upper 

quartile are the poor and good sites.  Genotype perfor-

mance is first analysed for the poorest site, next the 

two poorest sites, and so on.  The same procedure is 

applied to the good sites.  For each cycle of analysis, a 

two-dimensional diagram is developed that represents 

the first two principle coordinates.  Genotypes that 

have consistently shown an above average performance 

throughout the cycles are the most stable genotypes. 

 

General superiority measures 

Lin and Binns (1988) defined the measure of gen-

eral superiority Pi as the mean square of the distance 
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between a genotype’s response and the maximum re-

sponse at each site averaged over all sites.  They 

demonstrated that Pi may be regarded as the mean 

square (MS) of the joint effect of the genotypic (G) and 

GE interaction, thus 

  vyyP
s

j

mjiji 2/

2

1




  , 

where ymj is the maximum response among all geno-

types in the j-th site: the smaller the value the better the 

genotype. 

 

Yield-stability statistic 

Kang (1991) proposed the ‘rank sum method’.  

Ranks are assigned to mean yield with the highest yield 

receiving the rank of one and another rank is assigned 

to the stability variances with the lowest value having a 

value of one.  Then the yield rank and stability rank are 

summed for each genotype.  Genotypes with smaller 

rank sums are preferred.  Kang (1993) modified this 

method and gave it another name, the yield-stability 

statistic (YSi).  The necessary calculations are as fol-

lows: 

 

1. Rank genotypes according to yield, the genotype 

with lowest yield receives a rank of one. 

2. Adjustment of yield rank: +1 if the genotype mean 

yield is higher than the overall mean yield for a test 

(OMY); +2 and +3 if the genotype mean yield is 

higher than OMY by one least significance differ-

ence (LSD) or two LSDs or more respectively; -1 if 

the genotype mean yield is lower than OMY; -2 and 

-3 if the genotype mean yield is lower than OMY 

by one LSD or more and lower than OMY by two 

LSDs or more.  The adjusted rank was labelled (Yi). 

3. Assignment of stability rating (Si): Si = 0 if stability 

variance is not significant; and –2, -4 and -8 if it is 

significant at 10%, 5% and 1% probability levels, 

respectively. 

4. Compute and select genotypes: YSi = Yi + Si. 

 

The genotypes that have YSi values larger than the 

average are selected. 

 

Segmented regression analysis 

When selecting for wide adaptation for variable en-

vironmental conditions, the selected genotypes should 

ideally possess relatively high yield and stable perfor-

mance in high stress environments.  At the same time 

the genotypes should possess the capability to respond 

positively to favourable environments.  Therefore, the 

environments are grouped into high-yielding and low-

yielding groups first, then the response pattern for each 

group is fitted to a linear model by joint regression 

(Finlay and Wilkinson, 1963).  The ideal genotypes are 

the genotypes with regression coefficients in low-

yielding environments less than one and regression 

coefficients in high-yielding environments larger than 

one. 

 

Safety-First 
Eskridge (1990) introduced a decision-making con-

cept known as safety-first to the selection of stable 

genotypes.  The model he used was the Kataoka (1963) 

model.  Based on this model, the general safety-first 

index (SFI) is  

SFI= 
2

)1(. ii SZy   , 

where  is an acceptable probability of having a disas-

trously low performance, yi .  is the sample mean yield 

across sites for the i-th genotype, S i

2
 is a measure of 

stability for the i-th genotype, and Z(1-) is the (1-) 

percentile from a standard normal distribution. 

The genotypes with larger SFI values are the desir-

able ones.  Eskridge (1990) developed the safety-first 

index for several commonly used stability parameters. 

 

Expected utility maximisation 
Eskridge and Johnson (1991) introduced the ex-

pected utility maximisation (EUM) to select stable 

plant cultivars.  It can be separated into four major 

steps: 

 

1. Enumeration of all possible choices: if the single 

‘best’ genotype from a set of genotypes is selected, 

then the list of all possible choices is simply the set 

of genotypes being evaluated. 

 

2. Define utility function: to evaluate the genotypes by 

the utility function the utility function should have 

the following characteristics.  First, if a breeder pre-

fers A to B, then the utility of A is larger than B.  

Second, the scale on which the utility is defined is 

arbitrary, which means that the ordering of geno-
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types must not change under a positive linear trans-

formation.  Finally, it is likely to be a concave func-

tion of performance, where the curvature of the util-

ity function defines the breeder’s attitude toward 

stability.  The more curved the utility function, the 

greater the importance placed on stability.  Eskridge 

and Johnson (1991) used the negative exponential 

utility function as the functional form.  Therefore, 

U(Y)=1- e
-aY

, where ‘a’ is defined as the stability 

preference coefficient, a  0. 

 

3. Specify a probability distribution of genotype re-

sponse, f yij( ) : the performances of each genotype 

in all environments are rarely fully tested and need 

to be predicted.  Application of EUM to selection 

requires these ‘predictions’ be made in terms of a 

probability distribution for each genotype.  

Eskridge and Johnson (1991) assumed that geno-

typic performance is normally distributed, and that 

sample estimates of mean and variance from trials 

were used to replace the unknown true parameters. 

 

4. Calculate the indices for selection of stable geno-

types based on EUM: the ‘value’ the breeder may 

expect to obtain from the i-th genotype is simply 

the expected value of the utility of genotype per-

formance, i.e., 

E U y U y f y dyij ij ij ij[ ( )] ( ) ( )   , 

where integration is over all possible yields. 

 

If the performance of the i-th genotype in the j-th 

environment yij is normally distributed with the mean 

E(yi) and variance V(yi), then the general form of an 

expected utility index is 

E(yi)-(a/2) V(yi) . 

The genotype with largest index value is considered 

to be the ‘best’.  In practice, a stability model needs to 

be chosen so as to estimate E(yi) and V(yi). 

 

Hernandez et al. (1993) desirability index 

Hernandez et al. (1993) proposed a desirability in-

dex that is expressed as the area under the regression 

function.  It can be written as  

D y b Ci i i .  

where yi .  is the mean yield of the i-th genotype, bi is 

the linear regression coefficient of the i-th genotype on 

the environmental index (I) which is defined as the 

mean of an environment minus the grand mean, and 

C= 
I Ia b

2
 is the mean of the environmental indices 

at two extreme environments. 

 

Conclusion 

The heterogeneous variances of the genotypic 

means, within-site error variances and/or the heteroge-

neous GE interaction variances complicate the estima-

tion of genotypic means across sites.  The across-site 

genotypic mean of a genotype is a weighted mean of its 

means at every site.  Therefore, how to determine the 

weights is very important.  The method introduced in 

textbooks and currently applied by plant breeders is to 

use the within-site error variances as weights (Cochran 

and Cox, 1957).  Modelling error variance using a 

function of other variables has been used to replace the 

sample error variances as weights.  A mean that is 

more meaningful in the context of breeding may be 

more appreciated.  With a multi-trait selection index 

appropriate weights need to be determined by the rela-

tive importance of each trait in determining the eco-

nomic value of the genotypes.  Similarly the genotypic 

means at different sites may also be weighted by the 

relative importance of the production conditions repre-

sented by each site. 

For comparing the genotypic means across sites, the 

ANOVA plus multiple comparison method is often 

difficult to justify.  Since the stability of a genotype 

should also be taken into consideration when selection 

is made, the possibility of two genotypes with very 

similar performance and stability may be rare.  Though 

breeders may be more interested in ranking genotypes 

rather than detecting statistical significance, there is 

still a requirement to test for differences among geno-

types by statistical methods.  The method of Geisser 

and Greenhouse (1958) for the F test, and nonparamet-

ric methods may be more appropriate. 

The presence of significant genotype-by-environ-

ment interactions in multi-site testing is the rule rather 

than the exception.  Selection for genotypes with good 

stability has always been the objective of breeders.  

Many methods for simultaneous selection of perfor-
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mance and stability have been developed recently.  The 

relative performance of these methods under different 

situations is unknown.  The general superiority meas-

ure and Westcott method use relative performances at 

each site, do not require an explicit stability parameter 

in developing the selection criteria, and are simpler.  

The main disadvantage of these two methods is that 

breeders cannot make a subjective evaluation of the 

importance of the stability.  The desirability index re-

quires that the genotypic response can be explained by 

a linear model.  Because a linear model rarely models 

the genotypic response satisfactorily, this index may be 

of limited use in practice.  Similarly, the segmented 

regression method requires that linear models in each 

environmental group can model the genotypic respons-

es.  The rank sum method, yield-stability statistic, the 

safety-first method and the expected utility maximisa-

tion procedures all use stability parameters explicitly.  

Therefore, they all face the problem of selecting a form 

of stability parameter to use since different types of 

stability parameters may end up with the selection of 

different genotypes.  The safety-first and the expected 

utility maximisation procedures need to define a prob-

ability distribution of the genotypic performance across 

sites and the parameters of the distribution need to be 

estimated accurately.  Thus they can only be used when 

the number of sites is large.  Another obvious difficulty 

of the expected utility maximisation procedure is the 

specification of a utility function. 
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