
Why pasture growth prediction is difficult 

SJR Woodward and MD Rollo 
AgResearch Limited, Private Bag 3123, Hamilton 

Abstract 

A possible objective of pasture modelling is to make quantitative predictions of pasture growth, for use by 
farmers in feed budgeting, for example. However, if a model has originally been designed for the purpose of 
describing or understanding pasture growth processes, it may not be well suited to the purpose of prediction, 
because (I) it may operate at a different spatial or temporal scale to that required for the prediction, (2) it may 
not be applicable over the range of situations required for the prediction, (3) it may require input variables that 
are not readily available or that cannot be measured with sufficient accuracy, or (4) its design may be such that 
error propagation is not controlled so as to yield sufficiently accurate predictions. This paper discusses the key 
considerations required for robust pasture growth prediction modelling: prediction specification, model 
evaluation, choice of explanatory variables, model design, and parameter estimation. 

Additional Key Words: pasture growth models, scale, forecasting, explanatory variables, statistics, identification 
problem, bias, parameter estimation. 

Introduction 

Attempts to predict pasture growth rate in 
New Zealand date back at least to the 1950s, when 
Brougham and Glenday used linear and logistic 
models to explain the effects of season, weather and 
species on pasture growth (Brougham, 1956, 
Brougham, 1959, Glenday, 1959). Later models 
based on this approach were found to work 
moderately well at a particular site (Wright and 
Baars, 1975). Since then, pasture growth models 
have become ever more complex in an attempt to be 
applicable across a wider range of situations and 
break the reliance on site-specific measurements 
(McCall, 1984, Moore et al., 1997). 

Given this history, it seems reasonable for 
farmers to expect that it would be a straightforward 
proposition to generate predictions of pasture 
growth, to help with budgeting of feed supplies for 
animals, for example. However, the proposition of 
predicting pasture growth is not as simple as it might 
first appear. Particular problems are the difficulty in 
specifying exactly what measure of pasture growth is 
desired, and then in selecting and then supplying the 
important explanatory variables that determine the 
differences in pasture growth between farms, regions 
and seasons. This paper discusses the key 
considerations required for robust pasture growth 
prediction: prediction specification, model 
evaluation, choice of explanatory variables, model 
design, and parameter estimation, and highlights the 
difficulties and errors (conceptual and quantitative) 
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that may arise, as well as identifying issues that must 
be addressed to achieve accurate and useful 
predictions. 

Prediction Specification 
In providing a prediction, it is first necessary 

to specify exactly what "pasture growth prediction" 
is desired. The specification needs to be clear both to 
the modeller, who must generate the correct 
information, and to the user, who must know how to 
interpret the results and use them appropriately in 
decision making (Campbell, 1999). We begin with 
two definitions. 

"Pasture growth" can have several meanings. 
Although "pasture growth" technically refers to 
production of new tissue only (Hodgson, 1979), in 
common usage "pasture growth" is often used to 
refer to net herbage accumulation, i.e., the difference 
between new tissue growth and the disappearance of 
senescent material. The difference between these 
values can be substantial (Cayley et al., 1980, 
Chapman et al., 1984), a fact often not 
acknowledged in reported measurements of net 
pasture growth. This paper is primarily concerned 
with prediction of net pasture growth. 

"Prediction" need not refer to predicting the 
future-it simply indicates that we wish to predict 
what will happen (i.e., what the pasture growth rate 
will be) in some new situation for which we do not 
have data. The concept is illustrated 
diagrammatically in Figure 1. The new situation 
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might be a new location, a new time period, or a new 
management regime (e.g., a different grazing or 

Explanatory 

fertilisation regime), and is specified by means of 
"explanatory variables". 

c__v..;.(~-'n~,.· ~-~~-'-)s__, •.••...••...••. 1 

Model Evaluation 

Figure 1. The concept of pasture growth prediction. 

The model uses the explanatory variables supplied to 
calculate a prediction for the new situation. 

The main difficulty with specifying what 
pasture growth prediction is desired is one of spatial 
and temporal scale. Pasture growth (whether new or 
net) is highly variable (and discontinuous) in both 
space and time. Different patterns of variability are 
observed at different temporal and spatial scales. For 
example, pasture growth varies with time at the 
diurnal, weather pattern, and seasonal scales, and 
with space at the leaf, plant, vegetation-patch, 
paddock, soil type, farm and topographical scales. 
Figure 2 illustrates the day-to-day variability of 
pasture growth rate in a particular paddock over a 
one-year period. Each data point is already averaged 
over the area of the paddock and over a time period 
of 24 hours (c.f., Pearcy et aL, 1997). Further 
averaging over longer time periods, e.g., a month or 
a year, results in a different value of "pasture 
growth" at a particular point in time, and a different 
scale of pattern of pasture growth with time. The 
same is true spatially. In Figure 3 for example, the 
net pasture growth rates of individual paddocks on a 
farm range from 35 to 65 kgDM!ha/day. The pasture 
growth rate averaged over the whole farm is 53 
kgDM!ha/d. An important point is that using a 
representative sub-area (e.g., the paddock with the 
average pasture mass) to calculate growth rate for a 
larger area (e.g., a farm) usually results in a 
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significant overestimate of growth rate (de Wit and 
van Keulen, 1987, Parsons et al., 2001). In Figure 3, 
for example, the true farm average growth rate (53 
kgDM/ha/d) is much less than the growth rate of the 
paddock with average herbage mass (62 
kgDM!ha/d). Similar variation occurs between 
patches in a paddock, or between farms in a region. 

What temporal and spatial scale to use is 
determined by the use to which the information is to 
be put. Two practical examples are: (I) to provide 
daily whole-paddock predictions for use within a 
farm system research model(e.g., Sherlock and 
Bright, 1999), or (2) monthly whole-farm predictions 
for use by farmers in feed budgeting. A pasture 
growth prediction, therefore, is not properly 
specified unless it is clear what area of space and 
period oftime it is averaged over. 

Finally in this section, it is important to have 
some idea of what level of accuracy is required from 
the prediction. This is determined by the intended 
use of the prediction, and in particular can be 
calculated by performing a sensitivity analysis to 
determine the degree to which errors in the predicted 
pasture growth rate affect the outcome of the 
application. For example if the pasture growth 
prediction is to used by a farmer in feed budgeting, 
decisions to conserve or feed herbage may be 
relatively insensitive to predicted pasture growth 
rate, as simple management processes often perform 
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well regardless of the quality of the information used 
(Warren and Langley, 1999). On the other hand, 
even quite accurate forecasts may not be enough to 

allow the farmer to achieve a significantly improved 
profitability (Petersen and Fraser, 2001). 
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Figure 2. Calculated daily, monthly and annual average net pasture growth rates for a dairy paddock at 
Ruakura. These data were generated using the MECHANISTIC model. 
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Figure 3. Daily pasture growth rates (new and net, Paddock aid) calculated for a farm with 20 paddocks of 
different herbage mass (kgDM/ha). These data were generated using an unpublished pasture 
model that decomposes wbole farm pasture growth rate over a number of paddocks. 

Model Evaluation 
Closely related to prediction specification is 

the intended means of model evaluation. This 
typically involves comparison of model predictions 
to measured values, usually of pasture mass (usually 
expressed in kg of dry matter per hectare) (e.g., 
Riedo et al., 1998). Effective model evaluation 
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requires a suitable data set against which to test the 
model, which has been measured at the appropriate 
scale and sufficiently covers the range of situations 
over which the model is to be applied (e.g., seasons, 
regions, pasture types, fertiliser treatments). It also 
requires an understanding of the measurement errors 
inherent in the data, which define the limitations of 
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the evaluation, since evaluating a model against 
highly uncertain data can provide only a very weak 
test of model performance. 

A useful first step is to perform an evaluation 
of a "test" model. A suitable test model is any simple 
(even trivial) model that generates predictions with 
known properties, whether or not these predictions 
are accurate. An example would be a model that 
assumes that pasture growth rate is always 40 

kgDM!ha/d. Evaluating the test model (1) helps to 
clarify thinking as to what the evaluation process is 
actually evaluating, (2) tends to highlight any serious 
faults in the data set so that these can be rectified or 
removed, and (3) provides a benchmark against 
which the real model performance can be compared. 

No single statistic is adequate for evaluating 
the performance of a model relative to a data set. The 
key is to assess the model's performance in a way 
that is relevant to its intended use. Kendall and Ord 

Table 1. Evaluation of pasture growth models using data (N = 4122) from the trial at Dexcel No 2 dairy. 
MEP = mean error of prediction, MSEP = mean squared error of prediction, MAEP = mean 
absolute error of prediction, MAPEP = mean absolute percentage error of prediction. 

Model Description Explanatory Variables MEP MSEP MAEP MAPEP 
(kgDM/ha) (kgDMiba)2 (kgDMiba) ( %) 

1998-2001 Timing of defoliation, 58 · 0.249x106 388 13.6 
growth rates 
measured 
for each 
farm! et 
(Woodward, 
2001) 

post-grazing masses, 
farmlet number, month, 
year 

Timing of defoliation, 
post-grazing masses, 
day of year, weather 
(daily minimum and 
maximum temperatures, 
rainfall, solar radiation, 
windrun) 

(1990, p.135) propose calculating the mean squared 
error of prediction (MSEP), mean absolute error of 
prediction (MAEP) and mean absolute percentage 
error of prediction (MAPEP), and this approach is 
also advocated by the French statistician Wallach 
(Husson et al., 1998). In addition to these, one is 
usually interested in assessing model bias 
(systematic deviation from the data), to ensure that 
the model errors are normally distributed with a 
mean of zero. More holistic approaches to model 
evaluation can also be developed, which focus on a 
wider range of desired model attributes (Rykiel, 
1996, Reynolds and Ford, 1999). 

Example 
In our project, the evaluation data (Figure 4) 

were calibrated weekly visual pasture mass estimates 
collected over a three year period (1998-2001) for 
the 46 paddocks of the Herd 1, 3 and 5 farmlets (2.2, 
3.2 and 4.3 cows/ha respectively) at Dexcel's No 2 
dairy farm in Hamilton (Macdonald et al., 2001). 
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-3 0.453x106 524 17.7 

Each farmlet received 200kg of nitrogen in fertiliser 
per hectare annually. The visual estimation and 
calibration process resulted in typical data 
measurement errors of :t300 kgDM!ha (S.L. 
Woodward, pers. comm.). 

Based on the visual pasture mass data, 
monthly average pasture growth rates had also been 
calculated for each of these farmlets from 1998-
2001. These provided a suitable test model with 
which to develop the model evaluation procedure: 
the "ACTUAL" model, which used the actual 
monthly net growth rates measured for each farmlet 
during 1998-2001. Comparison of this test model 
with the visual pasture mass data as in Figure 4 
highlighted several erroneous pasture mass estimates 
and missing grazing dates, which were rectified or 
removed in order to get a "clean" data set, so that 
deviations between the model and the data were due 
only to data measurement error and model prediction 
error. 
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Table 2. Examples of explanatory variables affecting pasture growth. "Availability" refers to the ease 
with which this information can be accurately supplied to a model, either by the user (e.g., a 
farmer), or from historical measurements: high = typically well known, medium = can be 
measured, low = is difficult to measure. 

Subsystem Examples of Explanatory Variables Availability 
Site latitude high 

altitude high 
slope and aspect medium 

Soil soil type medium 

Pasture 

Management 

Grazing animals 

Weather 

Other 

moisture status low 
nutrient status 

depth 
herbage mass 
species mix 

developmental stage 
morphology 

leaf area 
fertiliser 

seed 
irrigation 

cultivation 
mowing 

defoliation 
fouling 
treading 

temperature 
rainfall 

solar radiation 
sunshine hours 

wind run 
worms 
pests 
fungi 

diseases 

low 
low 

medium 
low 
low 
low 

medium 
high 
high 
high 
high 
high 
high 
low 
high 
high 

medium 
medium 
medium 
medium 

low 
low 
low 
low 

The ACTUAL model was evaluated against 
the data, and prediction statistics calculated (Table 
1). There was no significant difference between 
residuals from different paddocks, and no systematic 
seasonal bias was evident (Figure 5A). This checked 
that the residuals were not correlated with any of the 
input variables, such as time of year. 

predictions. The variables that explain the 
differences in pasture growth between different sites 
and dates include site, soil, pasture, management, 
animal, weather (historical or hypothetical) and other 
factors (Table 2). Some pasture models attempt to 
capture a large number of these factors in order to 
describe the pasture evolution processes in detail and 
across a large range of situations. This is an 
important feature in models that are intended to 
increase knowledge about the pasture ecosystem 
(Thornley, 1998), 

Sources of Prediction Error 
Prediction errors arise from four sources: 

errors in the explanatory (input) variables, errors in 
the model structure, errors in the model parameters 
and computational errors (Wallach and Genard, 
1998). We will discuss these in turn. 

Explanatory variables 
First, care must be taken to select the set of 

explanatory variables that yield the most accurate 
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However, including additional explanatory 
variables and/or model detail does not necessarily 
improve a model's predictive ability, because of 
potential increases in the first three sources of error 
mentioned above (Reynolds and Acock, 1985, 
Hakanson, 1995). In particular, explanatory variables 
are often assumed to have been measured without 
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error. This is clearly not the case, and these errors 
can have a major impact on the predictive 
performance of the model. Furthermore, additional 
explanatory variables may be expensive or difficult 
to obtain. Therefore, the choice of explanatory 
variables must balance (l) the desired range of 
applicability of the model, (2) the sensitivity of the 
model predictions to the variables, (3) the relative 
error associated with measuring the variables, and 
(4) the ease with which the measurements can be 
obtained by the user (or otherwise provided by the 
model, e.g., through look-up tables or databases). 
These considerations may mean that the best 
predictions can be achieved by using a relatively 
simple model requiring a modest number of 
explanatory variables, which can be easily and 
accurately supplied. 

Model design 
Early models used the logistic function to describe 
pasture growth (Brougham, 1956, Parsons et al., 
2001). However, because pasture growth is an 
emergent property of an extremely complex 
biophysical system, made up of interacting soil, 
plant, and animal subsystems (Table 2), this 
approach has now largely been abandoned in favour 
of mechanistic models that more closely describe 
pasture processes (Arnold and bennett, 1975) 
McCall, 1984, Moore et al., 1997). Use of 
mechanism-based models also potentially improves 
the generality of the model, making it more likely 
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that it can be used at new sites and in new situations 
(Dent and Thornton, 1988). 

However, this does not mean that detailed 
mechanistic models are always suited to accurate 
pasture growth prediction. Simple empirical models 
(e.g., Glenday, 1959, Wright and Baars, 1975, 
Cacho, 1993 ), while not representing as inany of the 
driving processes, could provide more accurate 
predictions in some circumstances, and may be 
easier to use. This highlights the need to (1) carefully 
define what is required from a modelling project, and 
(2) use the simplest form of model capable of 
achieving this purpose. In pasture growth prediction 
projects, what is required is accurate predictions, and 
an empirical model may be preferred over a 
mechanistic model if it yields better results 
(especially if it is easier to use). 

One particular challenge of modelling pasture 
growth is calculating the effects of spatial and 
temporal variation in pasture mass (Shiyomi et al., 
1983) and growth response (Pearcy et al., 1997) and 
estimating the impact of this variation on the average 
growth rate over the area of space and period of time 
in question. One approach to handling this variation 
is the use of Gaussian integration (Goudriaan, 1986, 
Press et al., 1989). This averages over a region by 
weighting the growth rates calculated at a small 
number (e.g., three) of points chosen to represent the 
variation over the region. It is still necessary to 
specify the variances and covariances in the 
explanatory variables (Table 2) over the space-time 
region of interest, which may not be trivial. 
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Figure 4. A sample of the calibrated visual pasture mass estimate data from the Dexcel No 2 dairy trial, 
showing the timing of defoliation events (grazing, cutting), and pasture mass predictions from 
the ACTUAL model. Data points without a corresponding model prediction indicate estimates 
made during grazing. 
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Figure 5. Pattern of residuals from (A) the ACTUAL model and (B) the MECHANISTIC model 
compared with the Dexcel No 2 dairy data. Note the strong seasonal bias pattern in the 
residuals from the MECHANISTIC model. 

Example 
The MECHANISTIC model being developed 

in our project is described in Woodward (2001). This 
is a weather-driven dynamical systems model that 
simulates daily changes in the herbage mass of the 
vegetative leaf, reproductive leaf, and reproductive 
stem components of perennial ryegrass, white clover 
and dead material at a point in space. 

The MECHANISTIC model was evaluated 
against the data set described above, and the results 
compared with the results from evaluating the test 
model (Figure 4). The MECHANISTIC model 
would be unlikely to perform better than the 
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ACTUAL model, unless it successfully modelled 
variability not considered by the ACTUAL model 
(e.g., differences between paddocks). Nevertheless, 
the MECHANISTIC model has the advantage of 
being weather- rather than data-driven, and so offers 
the potential to predict pasture growth at new sites 
where historical pasture growth rates are not 
available, and where obtaining them would be an 
expensive and time-consuming process. 

While the predictions from the 
MECHANISTIC model had only a slightly higher 
average and percentage error than those from the 
ACTUAL model (Table 1), the MECHANISTIC 
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model at its current stage of development has a 
seasonal bias in its predictions (Figure SB). This 
indicates that it does not adequately represent the 
mechanisms driving seasonal patterns of pasture 
growth at this site. Further work is required to 
improve the seasonal behaviour of the model at this 
site, and also further evaluation against data sets 
from other sites. 

Model assumptions and applicability 
Every model is a simplification of the real 

world, and so includes a number of simplifying 
assumptions. For example, if the model has been 
designed for perennial ryegrass-white clover dairy 
pastures growing on flat, deep soils, which are not 
nitrogen fertilised (like the MECHANISTIC model), 
it would not be expected to work well in hill country 
sheep pastures. By comparison, the models of 
McCall (1984) and Moore et aL, (1997), were 
designed to apply across a wide range of pasture 
types. These assumptions must be clearly 
understood, to ensure that model is used 
appropriately, or at least is thoroughly tested. 

Similarly, when a model is used to produce a 
prediction, it needs to be stated where this prediction 
can legitimately be applied. This depends on how 
widely the model assumptions and the explanatory 
variables are valid. A powerful and versatile model 
therefore seeks to reduce the number of assumptions 
that are made, by including additional explanatory 
variables to cover a wider range of cases. 

Model parameter estimation 
Model parameters are determined either from 

literature or by adjusting them to fit a test data set 
(Wallach and Genard, 1998). While the latter method 
does not preclude the model being used for 
forecasting, determining parameters by adjustment 
(model fitting) has hidden dangers. First, suitable 
data must be available for fitting: these data must 
adequately represent the domain of model 
application (e.g., a range of sites) and must have well 
controlled measurement errors (most fitting routines 
require that the data measurement errors are 
normally distributed, independent, and have known, 
and relatively small, standard deviation). Second, 
even when the data are ideal, fitted parameter 
estimates may be biased and/or correlated with other 
parameter estimates (Hopkins and Leipold, 1996). 
Third, while adjusting parameters may give 
improved fit to specific data sets, this does not 
necessarily equate with improved predictive power. 
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Hopkins and Leipold (1996) have shown that 
parameter fitting may actually reduce the model's 
predictive accuracy relative to a new set of data. 
Therefore, automatic parameter fitting should be 
carried out only with the greatest of caution. 

Computational errors 
Finally, computational errors arise during the 

implementation of mathematical models on 
computer. If the model is defined as a set of coupled 
differential equations, for example,methods for 
accurate computer implementation are well 
established (e.g., Press et al., 1989), and so errors 
arising from this source should be minimal compared 
with those mentioned above. 

Conclusions 

In summary, pasture growth prediction is a 
complex task, which requires careful specification 
and statistical rigor. In particular, it is vital that the 
spatial and temporal scale, the required accuracy and 
range of applicability of the predictions, and the 
explanatory variables and assumptions to be used are 
agreed between the modeller and the user early on in 
any project, depending on the use for which the 
predictions are intended. 

These factors then determine what kind of 
model is most appropriate for making the 
predictions. In many instances, highly detailed 
mechanistic models designed to describe or 
understand pasture processes are poorly suited to 
predicting pasture growth, because of their heavy 
requirements for data and poor error control. 
However, purposefully designed mechanistic models 
can be highly suitable for predictive purposes, 
provided the errors due to explanatory (input) 
variables, model form and model parameters are 
carefully controlled, because they can be made more 
general than can data-based empirical models. 

Finally, good model evaluation requires both 
a suitable data set that spans the intended range of 
applicability of the predictions, and a statistically 
rigorous, well defined process for assessing model 
performance relative to this data set. The design· of 
this process can be facilitated by evaluation of a test 
model. 
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